Some new inhomogeneous Triebel–Lizorkin spaces on
metric measure spaces and their various characterizations
Studia Mathematica, Tome 167 (2005) no. 1, pp. 63-98
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $(X,\varrho,\mu)_{d,\theta}$ be a space of homogeneous type, i.e.
$X$ is a set, $\varrho$ is a quasi-metric on $X$
with the property
that there are constants $\theta\in (0,1]$ and $C_0>0$ such that
for all $x, x', y\in X$,
$$
|\varrho(x,y)-\varrho(x',y)|\le C_0\varrho(x,x')^\theta[\varrho(x,y)
+\varrho(x',y)]^{1-\theta},
$$
and $\mu$ is a nonnegative
Borel regular measure on $X$ such that for some $d>0$
and all $x\in X$,
$$
\mu(\{y\in X: \varrho(x,y) r\})\sim r^d.
$$
Let $\varepsilon\in (0,\theta]$, $|s| \varepsilon$ and
$
\max\{d/(d+\varepsilon),d/(d+s+\varepsilon)\} q \le \infty.
$
The author introduces new inhomogeneous Triebel–Lizorkin
spaces ${F^s_{\infty q}(X)}$ and establishes their frame characterizations
by first establishing a Plancherel–Pólya-type
inequality related to the norm $\|\cdot\|_{F^s_{\infty q}(X)}$, which
completes the theory of function spaces
on spaces of homogeneous type.
Moreover, the author establishes the connection between the space
${F^s_{\infty q}(X)}$ and the homogeneous Triebel–Lizorkin space ${\dot F^s_{\infty q}(X)}$.
In particular, he proves that
$\mathop{\rm bmo}\nolimits(X)$ coincides with $F^0_{\infty2}(X)$.
Keywords:
varrho theta space homogeneous type set varrho quasi metric property there constants theta varrho varrho varrho theta varrho varrho theta nonnegative borel regular measure varrho sim varepsilon theta varepsilon max varepsilon varepsilon infty author introduces inhomogeneous triebel lizorkin spaces infty establishes their frame characterizations first establishing plancherel lya type inequality related norm cdot infty which completes theory function spaces spaces homogeneous type moreover author establishes connection between space infty homogeneous triebel lizorkin space dot infty particular proves mathop bmo nolimits coincides infty
Affiliations des auteurs :
Dachun Yang 1
@article{10_4064_sm167_1_5,
author = {Dachun Yang},
title = {Some new inhomogeneous {Triebel{\textendash}Lizorkin} spaces on
metric measure spaces and their various characterizations},
journal = {Studia Mathematica},
pages = {63--98},
publisher = {mathdoc},
volume = {167},
number = {1},
year = {2005},
doi = {10.4064/sm167-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm167-1-5/}
}
TY - JOUR AU - Dachun Yang TI - Some new inhomogeneous Triebel–Lizorkin spaces on metric measure spaces and their various characterizations JO - Studia Mathematica PY - 2005 SP - 63 EP - 98 VL - 167 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm167-1-5/ DO - 10.4064/sm167-1-5 LA - en ID - 10_4064_sm167_1_5 ER -
%0 Journal Article %A Dachun Yang %T Some new inhomogeneous Triebel–Lizorkin spaces on metric measure spaces and their various characterizations %J Studia Mathematica %D 2005 %P 63-98 %V 167 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm167-1-5/ %R 10.4064/sm167-1-5 %G en %F 10_4064_sm167_1_5
Dachun Yang. Some new inhomogeneous Triebel–Lizorkin spaces on metric measure spaces and their various characterizations. Studia Mathematica, Tome 167 (2005) no. 1, pp. 63-98. doi: 10.4064/sm167-1-5
Cité par Sources :