$H^{\infty }$ functional calculus for sectorial
and bisectorial operators
Studia Mathematica, Tome 166 (2005) no. 3, pp. 221-241
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We give a concise exposition of the basic theory of
$H^\infty$ functional calculus for
$N$-tuples of sectorial or bisectorial operators, with respect to
operator-valued functions;
moreover we restate and prove in our setting a result of N. Kalton
and L. Weis about the boundedness
of the operator
$f(T_1,\ldots,T_N)$ when $f$ is an R-bounded operator-valued
holomorphic function.
Keywords:
concise exposition basic theory infty functional calculus n tuples sectorial bisectorial operators respect operator valued functions moreover restate prove setting result kalton weis about boundedness operator ldots r bounded operator valued holomorphic function
Affiliations des auteurs :
Giovanni Dore 1 ; Alberto Venni 1
@article{10_4064_sm166_3_2,
author = {Giovanni Dore and Alberto Venni},
title = {$H^{\infty }$ functional calculus for sectorial
and bisectorial operators},
journal = {Studia Mathematica},
pages = {221--241},
year = {2005},
volume = {166},
number = {3},
doi = {10.4064/sm166-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm166-3-2/}
}
TY - JOUR
AU - Giovanni Dore
AU - Alberto Venni
TI - $H^{\infty }$ functional calculus for sectorial
and bisectorial operators
JO - Studia Mathematica
PY - 2005
SP - 221
EP - 241
VL - 166
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm166-3-2/
DO - 10.4064/sm166-3-2
LA - en
ID - 10_4064_sm166_3_2
ER -
Giovanni Dore; Alberto Venni. $H^{\infty }$ functional calculus for sectorial
and bisectorial operators. Studia Mathematica, Tome 166 (2005) no. 3, pp. 221-241. doi: 10.4064/sm166-3-2
Cité par Sources :