Perturbations of isometries between $C(K)$-spaces
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 166 (2005) no. 2, pp. 181-197
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
               We study the Gromov–Hausdorff and Kadets distances between $C(K)$-spaces and their quotients. We prove that if the Gromov–Hausdorff distance between $C(K)$ and $C(L)$ is less than $1/16$ then $K$ and $L$ are homeomorphic. If the Kadets distance is less than one, and $K$ and $L$ are metrizable, then $C(K)$ and $C(L)$ are linearly isomorphic. For $K$ and $L$ countable, if $C(L)$ has a subquotient which is close enough to $C(K)$ in the Gromov–Hausdorff sense then $K$ is homeomorphic to a clopen subset of $L.$
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
study gromov hausdorff kadets distances between spaces their quotients prove gromov hausdorff distance between homeomorphic kadets distance and metrizable linearly isomorphic countable has subquotient which close enough gromov hausdorff sense homeomorphic clopen subset
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Yves Dutrieux 1 ; Nigel J. Kalton 2
@article{10_4064_sm166_2_4,
     author = {Yves Dutrieux and Nigel J. Kalton},
     title = {Perturbations of isometries between $C(K)$-spaces},
     journal = {Studia Mathematica},
     pages = {181--197},
     publisher = {mathdoc},
     volume = {166},
     number = {2},
     year = {2005},
     doi = {10.4064/sm166-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm166-2-4/}
}
                      
                      
                    TY - JOUR AU - Yves Dutrieux AU - Nigel J. Kalton TI - Perturbations of isometries between $C(K)$-spaces JO - Studia Mathematica PY - 2005 SP - 181 EP - 197 VL - 166 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm166-2-4/ DO - 10.4064/sm166-2-4 LA - en ID - 10_4064_sm166_2_4 ER -
Yves Dutrieux; Nigel J. Kalton. Perturbations of isometries between $C(K)$-spaces. Studia Mathematica, Tome 166 (2005) no. 2, pp. 181-197. doi: 10.4064/sm166-2-4
Cité par Sources :