Stochastic integration of functions with
 values in a Banach space
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 166 (2005) no. 2, pp. 131-170
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let $H$ be a separable real Hilbert space and let $E$
be a real Banach space.
In this paper we construct a stochastic integral
for certain operator-valued functions ${\mit\Phi}:(0,T)\to{\scr L}(H,E)$
with respect to a cylindrical Wiener process $\{W_H(t)\}_{t\in[0,T]}$.
The construction of the integral is given
by a series expansion in terms of the
stochastic integrals for certain $E$-valued
functions. As a substitute for the Itô isometry we show that
the square expectation of the integral equals the radonifying norm
of an operator which is canonically associated with the integrand.
We obtain characterizations for the class of stochastically
integrable functions and prove various convergence theorems.
The results are applied to the study of linear evolution equations
with additive cylindrical noise in general Banach spaces.
An example is presented of a linear evolution equation driven by a
one-dimensional Brownian motion which has no weak solution.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
separable real hilbert space real banach space paper construct stochastic integral certain operator valued functions mit phi scr respect cylindrical wiener process construction integral given series expansion terms stochastic integrals certain e valued functions substitute isometry square expectation integral equals radonifying norm operator which canonically associated integrand obtain characterizations class stochastically integrable functions prove various convergence theorems results applied study linear evolution equations additive cylindrical noise general banach spaces example presented linear evolution equation driven one dimensional brownian motion which has weak solution
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              J. M. A. M. van Neerven 1 ; L. Weis 2
@article{10_4064_sm166_2_2,
     author = {J. M. A. M. van Neerven and L. Weis},
     title = {Stochastic integration of functions with
 values in a {Banach} space},
     journal = {Studia Mathematica},
     pages = {131--170},
     publisher = {mathdoc},
     volume = {166},
     number = {2},
     year = {2005},
     doi = {10.4064/sm166-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm166-2-2/}
}
                      
                      
                    TY - JOUR AU - J. M. A. M. van Neerven AU - L. Weis TI - Stochastic integration of functions with values in a Banach space JO - Studia Mathematica PY - 2005 SP - 131 EP - 170 VL - 166 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm166-2-2/ DO - 10.4064/sm166-2-2 LA - en ID - 10_4064_sm166_2_2 ER -
J. M. A. M. van Neerven; L. Weis. Stochastic integration of functions with values in a Banach space. Studia Mathematica, Tome 166 (2005) no. 2, pp. 131-170. doi: 10.4064/sm166-2-2
Cité par Sources :