Supercyclic vectors and the Angle Criterion
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 166 (2005) no. 1, pp. 93-99
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We show that the Angle Criterion for testing supercyclic vectors depends in an essential way on the geometrical properties of the underlying space. In particular, we exhibit non-supercyclic vectors for the backward shift acting on $c_0$ that still satisfy such a criterion. Nevertheless, if ${\mathcal  B}$ is a locally uniformly convex Banach space, the Angle Criterion yields an equivalent condition for a vector to be supercyclic. Furthermore, we prove that local uniform convexity cannot be weakened to strict convexity.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
angle criterion testing supercyclic vectors depends essential geometrical properties underlying space particular exhibit non supercyclic vectors backward shift acting still satisfy criterion nevertheless mathcal locally uniformly convex banach space angle criterion yields equivalent condition vector supercyclic furthermore prove local uniform convexity cannot weakened strict convexity
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Eva A. Gallardo-Gutiérrez 1 ; Jonathan R. Partington 2
@article{10_4064_sm166_1_7,
     author = {Eva A. Gallardo-Guti\'errez and Jonathan R. Partington},
     title = {Supercyclic vectors and the {Angle} {Criterion}},
     journal = {Studia Mathematica},
     pages = {93--99},
     publisher = {mathdoc},
     volume = {166},
     number = {1},
     year = {2005},
     doi = {10.4064/sm166-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm166-1-7/}
}
                      
                      
                    TY - JOUR AU - Eva A. Gallardo-Gutiérrez AU - Jonathan R. Partington TI - Supercyclic vectors and the Angle Criterion JO - Studia Mathematica PY - 2005 SP - 93 EP - 99 VL - 166 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm166-1-7/ DO - 10.4064/sm166-1-7 LA - en ID - 10_4064_sm166_1_7 ER -
Eva A. Gallardo-Gutiérrez; Jonathan R. Partington. Supercyclic vectors and the Angle Criterion. Studia Mathematica, Tome 166 (2005) no. 1, pp. 93-99. doi: 10.4064/sm166-1-7
Cité par Sources :