Linear Kierst–Szpilrajn theorems
Studia Mathematica, Tome 166 (2005) no. 1, pp. 55-69
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove the following result which extends in a somewhat “linear” sense a theorem by Kierst and Szpilrajn and which holds on many “natural” spaces of holomorphic functions in the open unit disk ${\mathbb D}$: There exist a dense linear manifold and a closed infinite-dimensional linear manifold of holomorphic functions in ${\mathbb D}$ whose domain of holomorphy is ${\mathbb D}$ except for the null function. The existence of a dense linear manifold of noncontinuable functions is also shown in any domain for its full space of holomorphic functions.
Mots-clés :
prove following result which extends somewhat linear sense theorem kierst szpilrajn which holds many natural spaces holomorphic functions unit disk mathbb there exist dense linear manifold closed infinite dimensional linear manifold holomorphic functions mathbb whose domain holomorphy mathbb except null function existence dense linear manifold noncontinuable functions shown domain its full space holomorphic functions
Affiliations des auteurs :
L. Bernal-González  1
@article{10_4064_sm166_1_4,
author = {L. Bernal-Gonz\'alez},
title = {Linear {Kierst{\textendash}Szpilrajn} theorems},
journal = {Studia Mathematica},
pages = {55--69},
year = {2005},
volume = {166},
number = {1},
doi = {10.4064/sm166-1-4},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm166-1-4/}
}
L. Bernal-González. Linear Kierst–Szpilrajn theorems. Studia Mathematica, Tome 166 (2005) no. 1, pp. 55-69. doi: 10.4064/sm166-1-4
Cité par Sources :