A Künneth formula in topological homology and its applications to the simplicial cohomology of $\ell^1({\Bbb Z}_+^k)$
Studia Mathematica, Tome 166 (2005) no. 1, pp. 29-54

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We establish a Künneth formula for some chain complexes in the categories of Fréchet and Banach spaces. We consider a complex ${\cal X}$ of Banach spaces and continuous boundary maps $d_n$ with closed ranges and prove that $H^n({\cal X}') \cong H_n({\cal X})'$, where $H_n({\cal X})'$ is the dual space of the homology group of ${\cal X}$ and $H^n({\cal X}')$ is the cohomology group of the dual complex ${\cal X}'$. A Künneth formula for chain complexes of nuclear Fréchet spaces and continuous boundary maps with closed ranges is also obtained. This enables us to describe explicitly the simplicial cohomology groups ${\cal H}^n(\ell^1({\mathbb Z}_+^k), \ell^1({\mathbb Z}_+^k)')$ and homology groups ${\cal H}_n(\ell^1({\mathbb Z}_+^k), \ell^1({\mathbb Z}_+^k))$ of the semigroup algebra $\ell^1({\mathbb Z}_+^k)$.
DOI : 10.4064/sm166-1-3
Keywords: establish nneth formula chain complexes categories chet banach spaces consider complex nbsp cal banach spaces continuous boundary maps closed ranges prove cal cong cal where cal dual space homology group cal cal cohomology group dual complex cal nneth formula chain complexes nuclear chet spaces continuous boundary maps closed ranges obtained enables describe explicitly simplicial cohomology groups cal ell mathbb ell mathbb homology groups cal ell mathbb ell mathbb semigroup algebra ell mathbb

F. Gourdeau 1 ; Z. A. Lykova 2 ; M. C. White 2

1 Département de Mathématiques Université Laval Cité Universitaire (Québec) G1K 7P4, Canada
2 School of Mathematics and Statistics University of Newcastle upon Tyne Newcastle upon Tyne, NE1 7RU, UK
@article{10_4064_sm166_1_3,
     author = {F. Gourdeau and Z. A. Lykova and M. C. White},
     title = {A {K\"unneth} formula in topological homology and 
its applications to the simplicial cohomology of $\ell^1({\Bbb Z}_+^k)$},
     journal = {Studia Mathematica},
     pages = {29--54},
     publisher = {mathdoc},
     volume = {166},
     number = {1},
     year = {2005},
     doi = {10.4064/sm166-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm166-1-3/}
}
TY  - JOUR
AU  - F. Gourdeau
AU  - Z. A. Lykova
AU  - M. C. White
TI  - A Künneth formula in topological homology and 
its applications to the simplicial cohomology of $\ell^1({\Bbb Z}_+^k)$
JO  - Studia Mathematica
PY  - 2005
SP  - 29
EP  - 54
VL  - 166
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm166-1-3/
DO  - 10.4064/sm166-1-3
LA  - en
ID  - 10_4064_sm166_1_3
ER  - 
%0 Journal Article
%A F. Gourdeau
%A Z. A. Lykova
%A M. C. White
%T A Künneth formula in topological homology and 
its applications to the simplicial cohomology of $\ell^1({\Bbb Z}_+^k)$
%J Studia Mathematica
%D 2005
%P 29-54
%V 166
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm166-1-3/
%R 10.4064/sm166-1-3
%G en
%F 10_4064_sm166_1_3
F. Gourdeau; Z. A. Lykova; M. C. White. A Künneth formula in topological homology and 
its applications to the simplicial cohomology of $\ell^1({\Bbb Z}_+^k)$. Studia Mathematica, Tome 166 (2005) no. 1, pp. 29-54. doi: 10.4064/sm166-1-3

Cité par Sources :