On $\lambda $-commuting operators
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 166 (2005) no. 1, pp. 1-9
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              For a scalar $\lambda $, two operators $T$ and $S$ are said to 
$\lambda $-commute if $TS=\lambda ST$. In this note we explore the pervasiveness of the operators that $\lambda $-commute with a compact operator by characterizing the closure and the interior of the set of operators with this property.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
scalar lambda operators said lambda commute lambda note explore pervasiveness operators lambda commute compact operator characterizing closure interior set operators property
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              John B. Conway 1 ; Gabriel Prǎjiturǎ 2
@article{10_4064_sm166_1_1,
     author = {John B. Conway and Gabriel Prǎjiturǎ},
     title = {On $\lambda $-commuting operators},
     journal = {Studia Mathematica},
     pages = {1--9},
     publisher = {mathdoc},
     volume = {166},
     number = {1},
     year = {2005},
     doi = {10.4064/sm166-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm166-1-1/}
}
                      
                      
                    John B. Conway; Gabriel Prǎjiturǎ. On $\lambda $-commuting operators. Studia Mathematica, Tome 166 (2005) no. 1, pp. 1-9. doi: 10.4064/sm166-1-1
Cité par Sources :