For a scalar $\lambda $, two operators $T$ and $S$ are said to
$\lambda $-commute if $TS=\lambda ST$. In this note we explore the pervasiveness of the operators that $\lambda $-commute with a compact operator by characterizing the closure and the interior of the set of operators with this property.
@article{10_4064_sm166_1_1,
author = {John B. Conway and Gabriel Prǎjiturǎ},
title = {On $\lambda $-commuting operators},
journal = {Studia Mathematica},
pages = {1--9},
year = {2005},
volume = {166},
number = {1},
doi = {10.4064/sm166-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm166-1-1/}
}
TY - JOUR
AU - John B. Conway
AU - Gabriel Prǎjiturǎ
TI - On $\lambda $-commuting operators
JO - Studia Mathematica
PY - 2005
SP - 1
EP - 9
VL - 166
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm166-1-1/
DO - 10.4064/sm166-1-1
LA - en
ID - 10_4064_sm166_1_1
ER -
%0 Journal Article
%A John B. Conway
%A Gabriel Prǎjiturǎ
%T On $\lambda $-commuting operators
%J Studia Mathematica
%D 2005
%P 1-9
%V 166
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm166-1-1/
%R 10.4064/sm166-1-1
%G en
%F 10_4064_sm166_1_1
John B. Conway; Gabriel Prǎjiturǎ. On $\lambda $-commuting operators. Studia Mathematica, Tome 166 (2005) no. 1, pp. 1-9. doi: 10.4064/sm166-1-1