A note on the strong maximal operator on ${\Bbb R}^n$
Studia Mathematica, Tome 165 (2004) no. 3, pp. 291-294
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that for $f\in L\mathop {\rm ln}\nolimits ^{+}L({\mathbb R}^n)$ with compact support, there is a $g\in L\mathop {\rm ln}\nolimits ^{+}L({\mathbb R}^n)$ such that (a) $g$ and $f$ are equidistributed, (b) $M_S(g)\in L^1(E)$ for any measurable set $E$ of finite measure.
Keywords:
prove mathop nolimits mathbb compact support there mathop nolimits mathbb equidistributed measurable set finite measure
Affiliations des auteurs :
Jiecheng Chen 1 ; Xiangrong Zhu 1
@article{10_4064_sm165_3_6,
author = {Jiecheng Chen and Xiangrong Zhu},
title = {A note on the strong maximal operator on ${\Bbb R}^n$},
journal = {Studia Mathematica},
pages = {291--294},
publisher = {mathdoc},
volume = {165},
number = {3},
year = {2004},
doi = {10.4064/sm165-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm165-3-6/}
}
TY - JOUR
AU - Jiecheng Chen
AU - Xiangrong Zhu
TI - A note on the strong maximal operator on ${\Bbb R}^n$
JO - Studia Mathematica
PY - 2004
SP - 291
EP - 294
VL - 165
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm165-3-6/
DO - 10.4064/sm165-3-6
LA - en
ID - 10_4064_sm165_3_6
ER -
Jiecheng Chen; Xiangrong Zhu. A note on the strong maximal operator on ${\Bbb R}^n$. Studia Mathematica, Tome 165 (2004) no. 3, pp. 291-294. doi: 10.4064/sm165-3-6
Cité par Sources :