A note on the strong maximal operator on ${\Bbb R}^n$
Studia Mathematica, Tome 165 (2004) no. 3, pp. 291-294

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that for $f\in L\mathop {\rm ln}\nolimits ^{+}L({\mathbb R}^n)$ with compact support, there is a $g\in L\mathop {\rm ln}\nolimits ^{+}L({\mathbb R}^n)$ such that (a) $g$ and $f$ are equidistributed, (b) $M_S(g)\in L^1(E)$ for any measurable set $E$ of finite measure.
DOI : 10.4064/sm165-3-6
Keywords: prove mathop nolimits mathbb compact support there mathop nolimits mathbb equidistributed measurable set finite measure

Jiecheng Chen 1 ; Xiangrong Zhu 1

1 Department of Mathematics (Xixi Campus) Zhejiang University 310028 Hangzhou, P.R. China
@article{10_4064_sm165_3_6,
     author = {Jiecheng Chen and Xiangrong Zhu},
     title = {A note on the strong maximal operator on ${\Bbb R}^n$},
     journal = {Studia Mathematica},
     pages = {291--294},
     publisher = {mathdoc},
     volume = {165},
     number = {3},
     year = {2004},
     doi = {10.4064/sm165-3-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm165-3-6/}
}
TY  - JOUR
AU  - Jiecheng Chen
AU  - Xiangrong Zhu
TI  - A note on the strong maximal operator on ${\Bbb R}^n$
JO  - Studia Mathematica
PY  - 2004
SP  - 291
EP  - 294
VL  - 165
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm165-3-6/
DO  - 10.4064/sm165-3-6
LA  - en
ID  - 10_4064_sm165_3_6
ER  - 
%0 Journal Article
%A Jiecheng Chen
%A Xiangrong Zhu
%T A note on the strong maximal operator on ${\Bbb R}^n$
%J Studia Mathematica
%D 2004
%P 291-294
%V 165
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm165-3-6/
%R 10.4064/sm165-3-6
%G en
%F 10_4064_sm165_3_6
Jiecheng Chen; Xiangrong Zhu. A note on the strong maximal operator on ${\Bbb R}^n$. Studia Mathematica, Tome 165 (2004) no. 3, pp. 291-294. doi: 10.4064/sm165-3-6

Cité par Sources :