Topological and metric entropy pairs of ${\mathbb Z}^2$-actions
are defined and their properties are investigated,
analogously to ${\mathbb Z}$-actions. In particular, mixing
properties are studied in connection with entropy pairs.
@article{10_4064_sm165_3_4,
author = {Kyewon Koh Park and Uijung Lee},
title = {Entropy pairs of $\Bbb Z^2$
and their directional properties},
journal = {Studia Mathematica},
pages = {255--274},
year = {2004},
volume = {165},
number = {3},
doi = {10.4064/sm165-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm165-3-4/}
}
TY - JOUR
AU - Kyewon Koh Park
AU - Uijung Lee
TI - Entropy pairs of $\Bbb Z^2$
and their directional properties
JO - Studia Mathematica
PY - 2004
SP - 255
EP - 274
VL - 165
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm165-3-4/
DO - 10.4064/sm165-3-4
LA - en
ID - 10_4064_sm165_3_4
ER -
%0 Journal Article
%A Kyewon Koh Park
%A Uijung Lee
%T Entropy pairs of $\Bbb Z^2$
and their directional properties
%J Studia Mathematica
%D 2004
%P 255-274
%V 165
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm165-3-4/
%R 10.4064/sm165-3-4
%G en
%F 10_4064_sm165_3_4
Kyewon Koh Park; Uijung Lee. Entropy pairs of $\Bbb Z^2$
and their directional properties. Studia Mathematica, Tome 165 (2004) no. 3, pp. 255-274. doi: 10.4064/sm165-3-4