1Dipartimento di Matematica Università di Trento 38050 Povo (Trento), Italy 2Dipartimento di Matematica “Ennio De Giorgi” Università di Lecce, C.P. 193 73100 Lecce, Italy
Studia Mathematica, Tome 165 (2004) no. 3, pp. 221-254
We study, with purely analytic tools, existence, uniqueness and gradient estimates of the solutions to the Neumann problems associated with a second order elliptic operator with unbounded coefficients in spaces of continuous functions in an unbounded open set ${\mit \Omega }$ in ${\mathbb R}^N$.
Keywords:
study purely analytic tools existence uniqueness gradient estimates solutions neumann problems associated second order elliptic operator unbounded coefficients spaces continuous functions unbounded set mit omega mathbb
Affiliations des auteurs :
M. Bertoldi 
1
;
S. Fornaro 
2
1
Dipartimento di Matematica Università di Trento 38050 Povo (Trento), Italy
2
Dipartimento di Matematica “Ennio De Giorgi” Università di Lecce, C.P. 193 73100 Lecce, Italy
@article{10_4064_sm165_3_3,
author = {M. Bertoldi and S. Fornaro},
title = {Gradient estimates in
parabolic problems with unbounded coefficients},
journal = {Studia Mathematica},
pages = {221--254},
year = {2004},
volume = {165},
number = {3},
doi = {10.4064/sm165-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm165-3-3/}
}
TY - JOUR
AU - M. Bertoldi
AU - S. Fornaro
TI - Gradient estimates in
parabolic problems with unbounded coefficients
JO - Studia Mathematica
PY - 2004
SP - 221
EP - 254
VL - 165
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm165-3-3/
DO - 10.4064/sm165-3-3
LA - en
ID - 10_4064_sm165_3_3
ER -
%0 Journal Article
%A M. Bertoldi
%A S. Fornaro
%T Gradient estimates in
parabolic problems with unbounded coefficients
%J Studia Mathematica
%D 2004
%P 221-254
%V 165
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm165-3-3/
%R 10.4064/sm165-3-3
%G en
%F 10_4064_sm165_3_3
M. Bertoldi; S. Fornaro. Gradient estimates in
parabolic problems with unbounded coefficients. Studia Mathematica, Tome 165 (2004) no. 3, pp. 221-254. doi: 10.4064/sm165-3-3