Gradient estimates in
parabolic problems with unbounded coefficients
Studia Mathematica, Tome 165 (2004) no. 3, pp. 221-254
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study, with purely analytic tools, existence, uniqueness and gradient estimates of the solutions to the Neumann problems associated with a second order elliptic operator with unbounded coefficients in spaces of continuous functions in an unbounded open set ${\mit \Omega }$ in ${\mathbb R}^N$.
Keywords:
study purely analytic tools existence uniqueness gradient estimates solutions neumann problems associated second order elliptic operator unbounded coefficients spaces continuous functions unbounded set mit omega mathbb
Affiliations des auteurs :
M. Bertoldi 1 ; S. Fornaro 2
@article{10_4064_sm165_3_3,
author = {M. Bertoldi and S. Fornaro},
title = {Gradient estimates in
parabolic problems with unbounded coefficients},
journal = {Studia Mathematica},
pages = {221--254},
publisher = {mathdoc},
volume = {165},
number = {3},
year = {2004},
doi = {10.4064/sm165-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm165-3-3/}
}
TY - JOUR AU - M. Bertoldi AU - S. Fornaro TI - Gradient estimates in parabolic problems with unbounded coefficients JO - Studia Mathematica PY - 2004 SP - 221 EP - 254 VL - 165 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm165-3-3/ DO - 10.4064/sm165-3-3 LA - en ID - 10_4064_sm165_3_3 ER -
M. Bertoldi; S. Fornaro. Gradient estimates in parabolic problems with unbounded coefficients. Studia Mathematica, Tome 165 (2004) no. 3, pp. 221-254. doi: 10.4064/sm165-3-3
Cité par Sources :