Let $T$ be a continuous linear operator
on a Hausdorff topological vector space $\mathcal X$ over the field
$\mathbb C$. We show that if $T$ is $N$-supercyclic, i.e., if
$\mathcal X$ has an $N$-dimensional subspace whose orbit under
$T$ is dense in
$\cal X$, then
$T^*$ has at most $N$ eigenvalues (counting geometric
multiplicity). We then show that $N$-supercyclicity
cannot occur nontrivially in the finite-dimensional
setting: the orbit of an $N$-dimensional subspace cannot
be dense in an $(N+1)$-dimensional space. Finally, we show
that a subnormal operator on an infinite-dimensional Hilbert space can
never be
$N$-supercyclic.
Keywords:
continuous linear operator hausdorff topological vector space mathcal field mathbb n supercyclic mathcal has n dimensional subspace whose orbit under dense cal * has eigenvalues counting geometric multiplicity n supercyclicity cannot occur nontrivially finite dimensional setting orbit n dimensional subspace cannot dense dimensional space finally subnormal operator infinite dimensional hilbert space never n supercyclic
Affiliations des auteurs :
P. S. Bourdon 
1
;
N. S. Feldman 
1
;
J. H. Shapiro 
2
1
Washington and Lee University Lexington, VA 24450, U.S.A.
2
Michigan State University East Lansing, MI 48824, U.S.A.
@article{10_4064_sm165_2_4,
author = {P. S. Bourdon and N. S. Feldman and J. H. Shapiro},
title = {Some properties of $N$-supercyclic operators},
journal = {Studia Mathematica},
pages = {135--157},
year = {2004},
volume = {165},
number = {2},
doi = {10.4064/sm165-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm165-2-4/}
}
TY - JOUR
AU - P. S. Bourdon
AU - N. S. Feldman
AU - J. H. Shapiro
TI - Some properties of $N$-supercyclic operators
JO - Studia Mathematica
PY - 2004
SP - 135
EP - 157
VL - 165
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm165-2-4/
DO - 10.4064/sm165-2-4
LA - en
ID - 10_4064_sm165_2_4
ER -
%0 Journal Article
%A P. S. Bourdon
%A N. S. Feldman
%A J. H. Shapiro
%T Some properties of $N$-supercyclic operators
%J Studia Mathematica
%D 2004
%P 135-157
%V 165
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm165-2-4/
%R 10.4064/sm165-2-4
%G en
%F 10_4064_sm165_2_4
P. S. Bourdon; N. S. Feldman; J. H. Shapiro. Some properties of $N$-supercyclic operators. Studia Mathematica, Tome 165 (2004) no. 2, pp. 135-157. doi: 10.4064/sm165-2-4