Some properties of $N$-supercyclic operators
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 165 (2004) no. 2, pp. 135-157
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let $T$ be a continuous linear operator
on a Hausdorff topological vector space $\mathcal X$ over the field
$\mathbb C$. We show that if $T$ is $N$-supercyclic, i.e., if
$\mathcal X$ has an $N$-dimensional subspace whose orbit under
$T$ is dense in
$\cal X$, then
$T^*$ has at most $N$ eigenvalues (counting geometric
multiplicity). We then show that $N$-supercyclicity
cannot occur nontrivially in the finite-dimensional
setting: the orbit of an $N$-dimensional subspace cannot
be dense in an $(N+1)$-dimensional space. Finally, we show
that a subnormal operator on an infinite-dimensional Hilbert space can
never be
$N$-supercyclic.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
continuous linear operator hausdorff topological vector space mathcal field mathbb n supercyclic mathcal has n dimensional subspace whose orbit under dense cal * has eigenvalues counting geometric multiplicity n supercyclicity cannot occur nontrivially finite dimensional setting orbit n dimensional subspace cannot dense dimensional space finally subnormal operator infinite dimensional hilbert space never n supercyclic
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              P. S. Bourdon 1 ; N. S. Feldman 1 ; J. H. Shapiro 2
@article{10_4064_sm165_2_4,
     author = {P. S. Bourdon and N. S. Feldman and J. H. Shapiro},
     title = {Some properties of $N$-supercyclic operators},
     journal = {Studia Mathematica},
     pages = {135--157},
     publisher = {mathdoc},
     volume = {165},
     number = {2},
     year = {2004},
     doi = {10.4064/sm165-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm165-2-4/}
}
                      
                      
                    TY - JOUR AU - P. S. Bourdon AU - N. S. Feldman AU - J. H. Shapiro TI - Some properties of $N$-supercyclic operators JO - Studia Mathematica PY - 2004 SP - 135 EP - 157 VL - 165 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm165-2-4/ DO - 10.4064/sm165-2-4 LA - en ID - 10_4064_sm165_2_4 ER -
P. S. Bourdon; N. S. Feldman; J. H. Shapiro. Some properties of $N$-supercyclic operators. Studia Mathematica, Tome 165 (2004) no. 2, pp. 135-157. doi: 10.4064/sm165-2-4
Cité par Sources :