Some properties of $N$-supercyclic operators
Studia Mathematica, Tome 165 (2004) no. 2, pp. 135-157

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $T$ be a continuous linear operator on a Hausdorff topological vector space $\mathcal X$ over the field $\mathbb C$. We show that if $T$ is $N$-supercyclic, i.e., if $\mathcal X$ has an $N$-dimensional subspace whose orbit under $T$ is dense in $\cal X$, then $T^*$ has at most $N$ eigenvalues (counting geometric multiplicity). We then show that $N$-supercyclicity cannot occur nontrivially in the finite-dimensional setting: the orbit of an $N$-dimensional subspace cannot be dense in an $(N+1)$-dimensional space. Finally, we show that a subnormal operator on an infinite-dimensional Hilbert space can never be $N$-supercyclic.
DOI : 10.4064/sm165-2-4
Keywords: continuous linear operator hausdorff topological vector space mathcal field mathbb n supercyclic mathcal has n dimensional subspace whose orbit under dense cal * has eigenvalues counting geometric multiplicity n supercyclicity cannot occur nontrivially finite dimensional setting orbit n dimensional subspace cannot dense dimensional space finally subnormal operator infinite dimensional hilbert space never n supercyclic

P. S. Bourdon 1 ; N. S. Feldman 1 ; J. H. Shapiro 2

1 Washington and Lee University Lexington, VA 24450, U.S.A.
2 Michigan State University East Lansing, MI 48824, U.S.A.
@article{10_4064_sm165_2_4,
     author = {P. S. Bourdon and N. S. Feldman and J. H. Shapiro},
     title = {Some properties of $N$-supercyclic operators},
     journal = {Studia Mathematica},
     pages = {135--157},
     publisher = {mathdoc},
     volume = {165},
     number = {2},
     year = {2004},
     doi = {10.4064/sm165-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm165-2-4/}
}
TY  - JOUR
AU  - P. S. Bourdon
AU  - N. S. Feldman
AU  - J. H. Shapiro
TI  - Some properties of $N$-supercyclic operators
JO  - Studia Mathematica
PY  - 2004
SP  - 135
EP  - 157
VL  - 165
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm165-2-4/
DO  - 10.4064/sm165-2-4
LA  - en
ID  - 10_4064_sm165_2_4
ER  - 
%0 Journal Article
%A P. S. Bourdon
%A N. S. Feldman
%A J. H. Shapiro
%T Some properties of $N$-supercyclic operators
%J Studia Mathematica
%D 2004
%P 135-157
%V 165
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm165-2-4/
%R 10.4064/sm165-2-4
%G en
%F 10_4064_sm165_2_4
P. S. Bourdon; N. S. Feldman; J. H. Shapiro. Some properties of $N$-supercyclic operators. Studia Mathematica, Tome 165 (2004) no. 2, pp. 135-157. doi: 10.4064/sm165-2-4

Cité par Sources :