Some properties of packing measure with doubling gauge
Studia Mathematica, Tome 165 (2004) no. 2, pp. 125-134
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $g$ be a doubling gauge. We consider the packing measure ${\mathcal P}^g$ and the packing premeasure ${\mathcal P}_0^g$ in a metric space $X$. We first show that if ${\mathcal P}_0^g(X)$ is finite, then as a function of $X$, ${\mathcal P}_0^g$ has a kind of “outer regularity”. Then we prove that if $X$ is complete separable, then $\lambda \mathop {\rm sup}{\mathcal P}_0^g(F)\leq {\mathcal P}^g(B)\leq \mathop {\rm sup}{\mathcal P}_0^g(F)$ for every Borel subset $B$ of $X$, where the supremum is taken over all compact subsets of $B$ having finite ${\mathcal P}_0^g$-premeasure, and $\lambda $ is a positive number depending only on the doubling gauge $g$. As an application, we show that for every doubling gauge function, there is a compact metric space of finite positive packing measure.
Keywords:
doubling gauge consider packing measure mathcal packing premeasure mathcal metric space first mathcal finite function mathcal has kind outer regularity prove complete separable lambda mathop sup mathcal leq mathcal leq mathop sup mathcal every borel subset where supremum taken compact subsets having finite mathcal g premeasure lambda positive number depending only doubling gauge application every doubling gauge function there compact metric space finite positive packing measure
Affiliations des auteurs :
Sheng-You Wen 1 ; Zhi-Ying Wen 2
@article{10_4064_sm165_2_3,
author = {Sheng-You Wen and Zhi-Ying Wen},
title = {Some properties of packing measure with doubling gauge},
journal = {Studia Mathematica},
pages = {125--134},
publisher = {mathdoc},
volume = {165},
number = {2},
year = {2004},
doi = {10.4064/sm165-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm165-2-3/}
}
TY - JOUR AU - Sheng-You Wen AU - Zhi-Ying Wen TI - Some properties of packing measure with doubling gauge JO - Studia Mathematica PY - 2004 SP - 125 EP - 134 VL - 165 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm165-2-3/ DO - 10.4064/sm165-2-3 LA - en ID - 10_4064_sm165_2_3 ER -
Sheng-You Wen; Zhi-Ying Wen. Some properties of packing measure with doubling gauge. Studia Mathematica, Tome 165 (2004) no. 2, pp. 125-134. doi: 10.4064/sm165-2-3
Cité par Sources :