Some properties of packing measure with doubling gauge
Studia Mathematica, Tome 165 (2004) no. 2, pp. 125-134

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $g$ be a doubling gauge. We consider the packing measure ${\mathcal P}^g$ and the packing premeasure ${\mathcal P}_0^g$ in a metric space $X$. We first show that if ${\mathcal P}_0^g(X)$ is finite, then as a function of $X$, ${\mathcal P}_0^g$ has a kind of “outer regularity”. Then we prove that if $X$ is complete separable, then $\lambda \mathop {\rm sup}{\mathcal P}_0^g(F)\leq {\mathcal P}^g(B)\leq \mathop {\rm sup}{\mathcal P}_0^g(F)$ for every Borel subset $B$ of $X$, where the supremum is taken over all compact subsets of $B$ having finite ${\mathcal P}_0^g$-premeasure, and $\lambda $ is a positive number depending only on the doubling gauge $g$. As an application, we show that for every doubling gauge function, there is a compact metric space of finite positive packing measure.
DOI : 10.4064/sm165-2-3
Keywords: doubling gauge consider packing measure mathcal packing premeasure mathcal metric space first mathcal finite function mathcal has kind outer regularity prove complete separable lambda mathop sup mathcal leq mathcal leq mathop sup mathcal every borel subset where supremum taken compact subsets having finite mathcal g premeasure lambda positive number depending only doubling gauge application every doubling gauge function there compact metric space finite positive packing measure

Sheng-You Wen 1 ; Zhi-Ying Wen 2

1 Department of Mathematics Hubei University Hubei, 430062, P.R. China
2 Department of Mathematics Tsinghua University Beijing, 100084, P.R. China
@article{10_4064_sm165_2_3,
     author = {Sheng-You Wen and Zhi-Ying Wen},
     title = {Some properties of packing measure with doubling gauge},
     journal = {Studia Mathematica},
     pages = {125--134},
     publisher = {mathdoc},
     volume = {165},
     number = {2},
     year = {2004},
     doi = {10.4064/sm165-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm165-2-3/}
}
TY  - JOUR
AU  - Sheng-You Wen
AU  - Zhi-Ying Wen
TI  - Some properties of packing measure with doubling gauge
JO  - Studia Mathematica
PY  - 2004
SP  - 125
EP  - 134
VL  - 165
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm165-2-3/
DO  - 10.4064/sm165-2-3
LA  - en
ID  - 10_4064_sm165_2_3
ER  - 
%0 Journal Article
%A Sheng-You Wen
%A Zhi-Ying Wen
%T Some properties of packing measure with doubling gauge
%J Studia Mathematica
%D 2004
%P 125-134
%V 165
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm165-2-3/
%R 10.4064/sm165-2-3
%G en
%F 10_4064_sm165_2_3
Sheng-You Wen; Zhi-Ying Wen. Some properties of packing measure with doubling gauge. Studia Mathematica, Tome 165 (2004) no. 2, pp. 125-134. doi: 10.4064/sm165-2-3

Cité par Sources :