Denseness and Borel complexity
 of some sets of vector measures
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 165 (2004) no. 2, pp. 111-124
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let $\nu $ be a positive measure on a $\sigma $-algebra ${\mit \Sigma }$ of subsets of some set and let $X$ be a Banach space. Denote by $\mathop {\rm ca}\nolimits ({\mit \Sigma },X)$ the Banach space of $X$-valued measures on ${\mit \Sigma }$, equipped with the uniform norm, and by $\mathop {\rm ca}\nolimits ({\mit \Sigma },\nu ,X)$ its closed subspace consisting of those measures which vanish at every $\nu $-null set. We are concerned with the subsets ${\mathcal  E}_\nu (X)$ and ${\mathcal  A}_\nu (X)$ of $\mathop {\rm ca}\nolimits ({\mit \Sigma },X)$ defined by the conditions $|\varphi |=\nu $ and $|\varphi |\geq \nu $, respectively, where $|\varphi |$ stands for the variation of $\varphi \in \mathop {\rm ca}\nolimits ({\mit \Sigma },X)$. We establish necessary and sufficient conditions that ${\mathcal  E}_\nu (X)$ [resp., ${\mathcal  A}_\nu (X)$] be dense in $\mathop {\rm ca}\nolimits ({\mit \Sigma },\nu ,X)$ [resp., $\mathop {\rm ca}\nolimits ({\mit \Sigma },X)$]. We also show that ${\mathcal  E}_\nu (X)$ and ${\mathcal  A}_\nu (X)$ are always $G_\delta $-sets and establish necessary and sufficient conditions that they be $F_\sigma $-sets in the respective spaces.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
positive measure sigma algebra mit sigma subsets set banach space denote mathop nolimits mit sigma banach space x valued measures mit sigma equipped uniform norm mathop nolimits mit sigma its closed subspace consisting those measures which vanish every null set concerned subsets mathcal mathcal mathop nolimits mit sigma defined conditions varphi varphi geq respectively where varphi stands variation varphi mathop nolimits mit sigma establish necessary sufficient conditions mathcal resp mathcal dense mathop nolimits mit sigma resp mathop nolimits mit sigma mathcal mathcal always delta sets establish necessary sufficient conditions sigma sets respective spaces
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Zbigniew Lipecki 1
@article{10_4064_sm165_2_2,
     author = {Zbigniew Lipecki},
     title = {Denseness and {Borel} complexity
 of some sets of vector measures},
     journal = {Studia Mathematica},
     pages = {111--124},
     publisher = {mathdoc},
     volume = {165},
     number = {2},
     year = {2004},
     doi = {10.4064/sm165-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm165-2-2/}
}
                      
                      
                    Zbigniew Lipecki. Denseness and Borel complexity of some sets of vector measures. Studia Mathematica, Tome 165 (2004) no. 2, pp. 111-124. doi: 10.4064/sm165-2-2
Cité par Sources :