On coefficients of vector-valued Bloch functions
Studia Mathematica, Tome 165 (2004) no. 2, pp. 101-110
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $X$ be a complex Banach space and let $\mathop{\rm Bloch}(X)$ denote the space of $X$-valued analytic functions
on the unit disc such that $\sup_{|z|1}(1-|z|^2)\|f'(z)\|\infty$. A sequence $(T_n)_n$ of bounded operators between two
Banach spaces
$X$ and
$Y$
is said to be an operator-valued multiplier between $\mathop{\rm Bloch}(X)$ and $\ell_1(Y)$ if the map $\sum_{n=0}^\infty
x_nz^n\to(T_n(x_n))_n$ defines a bounded linear operator from
$\mathop{\rm Bloch}(X)$ into $\ell_1(Y)$. It is shown that if $X$ is a Hilbert space then $(T_n)_n$ is a
multiplier from $\mathop{\rm Bloch}(X)$ into
$\ell_1(Y)$ if and only if
$\sup_{k} \sum_{n=2^k}^{2^{k+1}}\|T_n\|^2\infty$. Several results about Taylor coefficients of vector-valued Bloch functions
depending on properties on $X$, such as Rademacher and Fourier type $p$, are presented.
Keywords:
complex banach space mathop bloch denote space x valued analytic functions unit disc sup infty sequence bounded operators between banach spaces said operator valued multiplier between mathop bloch ell map sum infty n defines bounded linear operator mathop bloch ell shown hilbert space multiplier mathop bloch ell only sup sum infty several results about taylor coefficients vector valued bloch functions depending properties rademacher fourier type presented
Affiliations des auteurs :
Oscar Blasco  1
@article{10_4064_sm165_2_1,
author = {Oscar Blasco},
title = {On coefficients of vector-valued {Bloch} functions},
journal = {Studia Mathematica},
pages = {101--110},
year = {2004},
volume = {165},
number = {2},
doi = {10.4064/sm165-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm165-2-1/}
}
Oscar Blasco. On coefficients of vector-valued Bloch functions. Studia Mathematica, Tome 165 (2004) no. 2, pp. 101-110. doi: 10.4064/sm165-2-1
Cité par Sources :