On coefficients of vector-valued Bloch functions
Studia Mathematica, Tome 165 (2004) no. 2, pp. 101-110

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X$ be a complex Banach space and let $\mathop{\rm Bloch}(X)$ denote the space of $X$-valued analytic functions on the unit disc such that $\sup_{|z|1}(1-|z|^2)\|f'(z)\|\infty$. A sequence $(T_n)_n$ of bounded operators between two Banach spaces $X$ and $Y$ is said to be an operator-valued multiplier between $\mathop{\rm Bloch}(X)$ and $\ell_1(Y)$ if the map $\sum_{n=0}^\infty x_nz^n\to(T_n(x_n))_n$ defines a bounded linear operator from $\mathop{\rm Bloch}(X)$ into $\ell_1(Y)$. It is shown that if $X$ is a Hilbert space then $(T_n)_n$ is a multiplier from $\mathop{\rm Bloch}(X)$ into $\ell_1(Y)$ if and only if $\sup_{k} \sum_{n=2^k}^{2^{k+1}}\|T_n\|^2\infty$. Several results about Taylor coefficients of vector-valued Bloch functions depending on properties on $X$, such as Rademacher and Fourier type $p$, are presented.
DOI : 10.4064/sm165-2-1
Keywords: complex banach space mathop bloch denote space x valued analytic functions unit disc sup infty sequence bounded operators between banach spaces said operator valued multiplier between mathop bloch ell map sum infty n defines bounded linear operator mathop bloch ell shown hilbert space multiplier mathop bloch ell only sup sum infty several results about taylor coefficients vector valued bloch functions depending properties rademacher fourier type presented

Oscar Blasco 1

1 Departamento de Análisis Matemático Universidad de Valencia 46100 Burjassot Valencia, Spain
@article{10_4064_sm165_2_1,
     author = {Oscar Blasco},
     title = {On coefficients of vector-valued {Bloch} functions},
     journal = {Studia Mathematica},
     pages = {101--110},
     publisher = {mathdoc},
     volume = {165},
     number = {2},
     year = {2004},
     doi = {10.4064/sm165-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm165-2-1/}
}
TY  - JOUR
AU  - Oscar Blasco
TI  - On coefficients of vector-valued Bloch functions
JO  - Studia Mathematica
PY  - 2004
SP  - 101
EP  - 110
VL  - 165
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm165-2-1/
DO  - 10.4064/sm165-2-1
LA  - en
ID  - 10_4064_sm165_2_1
ER  - 
%0 Journal Article
%A Oscar Blasco
%T On coefficients of vector-valued Bloch functions
%J Studia Mathematica
%D 2004
%P 101-110
%V 165
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm165-2-1/
%R 10.4064/sm165-2-1
%G en
%F 10_4064_sm165_2_1
Oscar Blasco. On coefficients of vector-valued Bloch functions. Studia Mathematica, Tome 165 (2004) no. 2, pp. 101-110. doi: 10.4064/sm165-2-1

Cité par Sources :