Biorthogonal systems in Banach spaces
Studia Mathematica, Tome 165 (2004) no. 1, pp. 81-100
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We give biorthogonal system characterizations of Banach spaces that fail the Dunford–Pettis property, contain an isomorphic copy of $c_0$, or fail the hereditary Dunford–Pettis property. We combine this with previous results to show that each infinite-dimensional Banach space has one of three types of biorthogonal systems.
Keywords:
biorthogonal system characterizations banach spaces fail dunford pettis property contain isomorphic copy fail hereditary dunford pettis property combine previous results each infinite dimensional banach space has three types biorthogonal systems
Affiliations des auteurs :
Michael A. Coco  1
@article{10_4064_sm165_1_7,
author = {Michael A. Coco},
title = {Biorthogonal systems in {Banach} spaces},
journal = {Studia Mathematica},
pages = {81--100},
year = {2004},
volume = {165},
number = {1},
doi = {10.4064/sm165-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm165-1-7/}
}
Michael A. Coco. Biorthogonal systems in Banach spaces. Studia Mathematica, Tome 165 (2004) no. 1, pp. 81-100. doi: 10.4064/sm165-1-7
Cité par Sources :