Biorthogonal systems in Banach spaces
Studia Mathematica, Tome 165 (2004) no. 1, pp. 81-100

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give biorthogonal system characterizations of Banach spaces that fail the Dunford–Pettis property, contain an isomorphic copy of $c_0$, or fail the hereditary Dunford–Pettis property. We combine this with previous results to show that each infinite-dimensional Banach space has one of three types of biorthogonal systems.
DOI : 10.4064/sm165-1-7
Keywords: biorthogonal system characterizations banach spaces fail dunford pettis property contain isomorphic copy fail hereditary dunford pettis property combine previous results each infinite dimensional banach space has three types biorthogonal systems

Michael A. Coco 1

1 Department of Mathematics Lynchburg College Lynchburg, VA 24501, U.S.A.
@article{10_4064_sm165_1_7,
     author = {Michael A. Coco},
     title = {Biorthogonal systems in {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {81--100},
     publisher = {mathdoc},
     volume = {165},
     number = {1},
     year = {2004},
     doi = {10.4064/sm165-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm165-1-7/}
}
TY  - JOUR
AU  - Michael A. Coco
TI  - Biorthogonal systems in Banach spaces
JO  - Studia Mathematica
PY  - 2004
SP  - 81
EP  - 100
VL  - 165
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm165-1-7/
DO  - 10.4064/sm165-1-7
LA  - en
ID  - 10_4064_sm165_1_7
ER  - 
%0 Journal Article
%A Michael A. Coco
%T Biorthogonal systems in Banach spaces
%J Studia Mathematica
%D 2004
%P 81-100
%V 165
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm165-1-7/
%R 10.4064/sm165-1-7
%G en
%F 10_4064_sm165_1_7
Michael A. Coco. Biorthogonal systems in Banach spaces. Studia Mathematica, Tome 165 (2004) no. 1, pp. 81-100. doi: 10.4064/sm165-1-7

Cité par Sources :