The Stein–Weiss theorem for the ergodic Hilbert transform
Studia Mathematica, Tome 165 (2004) no. 1, pp. 61-71

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The Stein–Weiss theorem that the distribution function of the Hilbert transform of the characteristic function of $E$ depends only on the measure of $E$ is generalized for the ergodic Hilbert transform in the case of a one-parameter flow of measure-preserving transformations on a $\sigma $-finite measure space.
DOI : 10.4064/sm165-1-5
Mots-clés : stein weiss theorem distribution function hilbert transform characteristic function depends only measure generalized ergodic hilbert transform one parameter flow measure preserving transformations sigma finite measure space

Lasha Ephremidze 1

1 A. Razmadze Mathematical Institute 1, M. Aleksidze Str. 380093 Tbilisi, Georgia
@article{10_4064_sm165_1_5,
     author = {Lasha Ephremidze},
     title = {The {Stein{\textendash}Weiss} theorem for the
  ergodic {Hilbert} transform},
     journal = {Studia Mathematica},
     pages = {61--71},
     publisher = {mathdoc},
     volume = {165},
     number = {1},
     year = {2004},
     doi = {10.4064/sm165-1-5},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm165-1-5/}
}
TY  - JOUR
AU  - Lasha Ephremidze
TI  - The Stein–Weiss theorem for the
  ergodic Hilbert transform
JO  - Studia Mathematica
PY  - 2004
SP  - 61
EP  - 71
VL  - 165
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm165-1-5/
DO  - 10.4064/sm165-1-5
LA  - de
ID  - 10_4064_sm165_1_5
ER  - 
%0 Journal Article
%A Lasha Ephremidze
%T The Stein–Weiss theorem for the
  ergodic Hilbert transform
%J Studia Mathematica
%D 2004
%P 61-71
%V 165
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm165-1-5/
%R 10.4064/sm165-1-5
%G de
%F 10_4064_sm165_1_5
Lasha Ephremidze. The Stein–Weiss theorem for the
  ergodic Hilbert transform. Studia Mathematica, Tome 165 (2004) no. 1, pp. 61-71. doi: 10.4064/sm165-1-5

Cité par Sources :