Mod 2 normal numbers and skew products
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 165 (2004) no. 1, pp. 53-60
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let $E$ be an interval in the unit interval $[0,1)$.
For each $x \in [0,1)$ define $d_n(x) \in \{0,1 \}$ by
$d_n(x) := \sum_{i=1}^n 1_E (\{2^{i-1} x\}) \pmod 2$, where
$\{t\}$ is the fractional part of $t$.
Then $x$ is called a normal number mod $2$ with respect to $E$ if
$N^{-1} \sum_{n=1}^N d_n(x)$ converges to $1/2$.
It is shown that for any interval $E \not=(1/6, 5/6)$ a.e. $x$ is
a normal number mod $2$ with respect to $E$.
For $E = (1/6, 5/6)$ it is proved that
$N^{-1} \sum_{n=1}^N d_n(x)$ converges a.e. and the limit equals
$1/3$ or $2/3$ depending on $x$.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
interval unit interval each define sum i pmod where fractional part nbsp called normal number mod respect sum x converges shown interval normal number mod nbsp respect proved sum x converges limit equals depending
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Geon Ho Choe 1 ; Toshihiro Hamachi 2 ; Hitoshi Nakada 3
@article{10_4064_sm165_1_4,
     author = {Geon Ho Choe and Toshihiro Hamachi and Hitoshi Nakada},
     title = {Mod 2 normal numbers and skew products},
     journal = {Studia Mathematica},
     pages = {53--60},
     publisher = {mathdoc},
     volume = {165},
     number = {1},
     year = {2004},
     doi = {10.4064/sm165-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm165-1-4/}
}
                      
                      
                    TY - JOUR AU - Geon Ho Choe AU - Toshihiro Hamachi AU - Hitoshi Nakada TI - Mod 2 normal numbers and skew products JO - Studia Mathematica PY - 2004 SP - 53 EP - 60 VL - 165 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm165-1-4/ DO - 10.4064/sm165-1-4 LA - en ID - 10_4064_sm165_1_4 ER -
Geon Ho Choe; Toshihiro Hamachi; Hitoshi Nakada. Mod 2 normal numbers and skew products. Studia Mathematica, Tome 165 (2004) no. 1, pp. 53-60. doi: 10.4064/sm165-1-4
Cité par Sources :