1Department of Mathematics Korea Advanced Institute of Science and Technology Daejeon, South Korea 2Department of Mathematics Kyushu University Fukuoka, Japan 3Department of Mathematics Keio University Yokohama, Japan
Studia Mathematica, Tome 165 (2004) no. 1, pp. 53-60
Let $E$ be an interval in the unit interval $[0,1)$.
For each $x \in [0,1)$ define $d_n(x) \in \{0,1 \}$ by
$d_n(x) := \sum_{i=1}^n 1_E (\{2^{i-1} x\}) \pmod 2$, where
$\{t\}$ is the fractional part of $t$.
Then $x$ is called a normal number mod $2$ with respect to $E$ if
$N^{-1} \sum_{n=1}^N d_n(x)$ converges to $1/2$.
It is shown that for any interval $E \not=(1/6, 5/6)$ a.e. $x$ is
a normal number mod $2$ with respect to $E$.
For $E = (1/6, 5/6)$ it is proved that
$N^{-1} \sum_{n=1}^N d_n(x)$ converges a.e. and the limit equals
$1/3$ or $2/3$ depending on $x$.
Keywords:
interval unit interval each define sum i pmod where fractional part nbsp called normal number mod respect sum x converges shown interval normal number mod nbsp respect proved sum x converges limit equals depending
1
Department of Mathematics Korea Advanced Institute of Science and Technology Daejeon, South Korea
2
Department of Mathematics Kyushu University Fukuoka, Japan
3
Department of Mathematics Keio University Yokohama, Japan
@article{10_4064_sm165_1_4,
author = {Geon Ho Choe and Toshihiro Hamachi and Hitoshi Nakada},
title = {Mod 2 normal numbers and skew products},
journal = {Studia Mathematica},
pages = {53--60},
year = {2004},
volume = {165},
number = {1},
doi = {10.4064/sm165-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm165-1-4/}
}
TY - JOUR
AU - Geon Ho Choe
AU - Toshihiro Hamachi
AU - Hitoshi Nakada
TI - Mod 2 normal numbers and skew products
JO - Studia Mathematica
PY - 2004
SP - 53
EP - 60
VL - 165
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm165-1-4/
DO - 10.4064/sm165-1-4
LA - en
ID - 10_4064_sm165_1_4
ER -
%0 Journal Article
%A Geon Ho Choe
%A Toshihiro Hamachi
%A Hitoshi Nakada
%T Mod 2 normal numbers and skew products
%J Studia Mathematica
%D 2004
%P 53-60
%V 165
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm165-1-4/
%R 10.4064/sm165-1-4
%G en
%F 10_4064_sm165_1_4
Geon Ho Choe; Toshihiro Hamachi; Hitoshi Nakada. Mod 2 normal numbers and skew products. Studia Mathematica, Tome 165 (2004) no. 1, pp. 53-60. doi: 10.4064/sm165-1-4