Envelope functions and asymptotic structures
in Banach spaces
Studia Mathematica, Tome 164 (2004) no. 3, pp. 283-306
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We introduce a notion of disjoint envelope functions to study asymptotic structures of Banach spaces. The main result gives a new characterization of asymptotic-$\ell _p$ spaces in terms of the $\ell _p$-behavior of “disjoint-permissible” vectors of constant coefficients. Applying this result to Tirilman spaces we obtain a negative solution to a conjecture of Casazza and Shura. Further investigation of the disjoint envelopes leads to a finite-representability result in the spirit of the Maurey–Pisier theorem.
Keywords:
introduce notion disjoint envelope functions study asymptotic structures banach spaces main result gives characterization asymptotic ell spaces terms ell p behavior disjoint permissible vectors constant coefficients applying result tirilman spaces obtain negative solution conjecture casazza shura further investigation disjoint envelopes leads finite representability result spirit maurey pisier theorem
Affiliations des auteurs :
Bünyamin Sarı 1
@article{10_4064_sm164_3_6,
author = {B\"unyamin Sar{\i}},
title = {Envelope functions and asymptotic structures
in {Banach} spaces},
journal = {Studia Mathematica},
pages = {283--306},
publisher = {mathdoc},
volume = {164},
number = {3},
year = {2004},
doi = {10.4064/sm164-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm164-3-6/}
}
Bünyamin Sarı. Envelope functions and asymptotic structures in Banach spaces. Studia Mathematica, Tome 164 (2004) no. 3, pp. 283-306. doi: 10.4064/sm164-3-6
Cité par Sources :