Unitary equivalence of operators and dilations
Studia Mathematica, Tome 164 (2004) no. 3, pp. 253-255
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Given two contractions $T$ and $T'$ such that $T'-T$ is an operator of finite rank, we prove, under some conditions, the unitary equivalence of the unitary parts of the minimal isometric dilations (respectively minimal co-isometric extensions) of $T$ and $T'$.
Keywords:
given contractions t t operator finite rank prove under conditions unitary equivalence unitary parts minimal isometric dilations respectively minimal co isometric extensions nbsp
Affiliations des auteurs :
Chafiq Benhida 1
@article{10_4064_sm164_3_4,
author = {Chafiq Benhida},
title = {Unitary equivalence of operators and dilations},
journal = {Studia Mathematica},
pages = {253--255},
publisher = {mathdoc},
volume = {164},
number = {3},
year = {2004},
doi = {10.4064/sm164-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm164-3-4/}
}
Chafiq Benhida. Unitary equivalence of operators and dilations. Studia Mathematica, Tome 164 (2004) no. 3, pp. 253-255. doi: 10.4064/sm164-3-4
Cité par Sources :