Multilinear almost diagonal estimates and applications
Studia Mathematica, Tome 164 (2004) no. 1, pp. 75-89

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that an almost diagonal condition on the $(m+1)$-linear tensor associated to an $m$-linear operator implies boundedness of the operator on products of classical function spaces. We then provide applications to the study of certain singular integral operators.
DOI : 10.4064/sm164-1-5
Keywords: prove almost diagonal condition linear tensor associated m linear operator implies boundedness operator products classical function spaces provide applications study certain singular integral operators

Árpád Bényi 1 ; Nikolaos Tzirakis 1

1 Department of Mathematics and Statistics Lederle GRT University of Massachusetts Amherst, MA 01003, U.S.A.
@article{10_4064_sm164_1_5,
     author = {\'Arp\'ad B\'enyi and Nikolaos Tzirakis},
     title = {Multilinear almost diagonal estimates
 and applications},
     journal = {Studia Mathematica},
     pages = {75--89},
     publisher = {mathdoc},
     volume = {164},
     number = {1},
     year = {2004},
     doi = {10.4064/sm164-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm164-1-5/}
}
TY  - JOUR
AU  - Árpád Bényi
AU  - Nikolaos Tzirakis
TI  - Multilinear almost diagonal estimates
 and applications
JO  - Studia Mathematica
PY  - 2004
SP  - 75
EP  - 89
VL  - 164
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm164-1-5/
DO  - 10.4064/sm164-1-5
LA  - en
ID  - 10_4064_sm164_1_5
ER  - 
%0 Journal Article
%A Árpád Bényi
%A Nikolaos Tzirakis
%T Multilinear almost diagonal estimates
 and applications
%J Studia Mathematica
%D 2004
%P 75-89
%V 164
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm164-1-5/
%R 10.4064/sm164-1-5
%G en
%F 10_4064_sm164_1_5
Árpád Bényi; Nikolaos Tzirakis. Multilinear almost diagonal estimates
 and applications. Studia Mathematica, Tome 164 (2004) no. 1, pp. 75-89. doi: 10.4064/sm164-1-5

Cité par Sources :