Hardy spaces $H^1$
for Schrödinger operators with certain potentials
Studia Mathematica, Tome 164 (2004) no. 1, pp. 39-53
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\{ K_t\} _{t>0}$ be the semigroup of linear operators generated by a Schrödinger operator $-L={\mit \Delta } -V$ with $V\geq 0$. We say that $f$ belongs to $H_L^1$ if $\| \mathop {\rm sup}_{t>0}|K_tf(x)|\, \| _{L^1(dx)}\infty $. We state conditions on $V$ and $K_t$ which allow us to give an atomic characterization of the space $H^1_L$.
Keywords:
semigroup linear operators generated schr dinger operator l mit delta v geq say belongs mathop sup infty state conditions which allow atomic characterization space
Affiliations des auteurs :
Jacek Dziubański 1 ; Jacek Zienkiewicz 1
@article{10_4064_sm164_1_3,
author = {Jacek Dziuba\'nski and Jacek Zienkiewicz},
title = {Hardy spaces $H^1$
for {Schr\"odinger} operators with certain potentials},
journal = {Studia Mathematica},
pages = {39--53},
publisher = {mathdoc},
volume = {164},
number = {1},
year = {2004},
doi = {10.4064/sm164-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm164-1-3/}
}
TY - JOUR AU - Jacek Dziubański AU - Jacek Zienkiewicz TI - Hardy spaces $H^1$ for Schrödinger operators with certain potentials JO - Studia Mathematica PY - 2004 SP - 39 EP - 53 VL - 164 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm164-1-3/ DO - 10.4064/sm164-1-3 LA - en ID - 10_4064_sm164_1_3 ER -
Jacek Dziubański; Jacek Zienkiewicz. Hardy spaces $H^1$ for Schrödinger operators with certain potentials. Studia Mathematica, Tome 164 (2004) no. 1, pp. 39-53. doi: 10.4064/sm164-1-3
Cité par Sources :