Hardy spaces $H^1$ for Schrödinger operators with certain potentials
Studia Mathematica, Tome 164 (2004) no. 1, pp. 39-53

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\{ K_t\} _{t>0}$ be the semigroup of linear operators generated by a Schrödinger operator $-L={\mit \Delta } -V$ with $V\geq 0$. We say that $f$ belongs to $H_L^1$ if $\| \mathop {\rm sup}_{t>0}|K_tf(x)|\, \| _{L^1(dx)}\infty $. We state conditions on $V$ and $K_t$ which allow us to give an atomic characterization of the space $H^1_L$.
DOI : 10.4064/sm164-1-3
Keywords: semigroup linear operators generated schr dinger operator l mit delta v geq say belongs mathop sup infty state conditions which allow atomic characterization space

Jacek Dziubański 1 ; Jacek Zienkiewicz 1

1 Institute of Mathematics University of Wrocław Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland
@article{10_4064_sm164_1_3,
     author = {Jacek Dziuba\'nski and Jacek Zienkiewicz},
     title = {Hardy spaces $H^1$
 for {Schr\"odinger} operators with certain potentials},
     journal = {Studia Mathematica},
     pages = {39--53},
     publisher = {mathdoc},
     volume = {164},
     number = {1},
     year = {2004},
     doi = {10.4064/sm164-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm164-1-3/}
}
TY  - JOUR
AU  - Jacek Dziubański
AU  - Jacek Zienkiewicz
TI  - Hardy spaces $H^1$
 for Schrödinger operators with certain potentials
JO  - Studia Mathematica
PY  - 2004
SP  - 39
EP  - 53
VL  - 164
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm164-1-3/
DO  - 10.4064/sm164-1-3
LA  - en
ID  - 10_4064_sm164_1_3
ER  - 
%0 Journal Article
%A Jacek Dziubański
%A Jacek Zienkiewicz
%T Hardy spaces $H^1$
 for Schrödinger operators with certain potentials
%J Studia Mathematica
%D 2004
%P 39-53
%V 164
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm164-1-3/
%R 10.4064/sm164-1-3
%G en
%F 10_4064_sm164_1_3
Jacek Dziubański; Jacek Zienkiewicz. Hardy spaces $H^1$
 for Schrödinger operators with certain potentials. Studia Mathematica, Tome 164 (2004) no. 1, pp. 39-53. doi: 10.4064/sm164-1-3

Cité par Sources :