Elliptic functions, area integrals and the
exponential square class on $B_{1}(0) \subseteq {\Bbb R}^{n},n>2$
Studia Mathematica, Tome 164 (2004) no. 1, pp. 1-28
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For two strictly elliptic operators $L_{0}$ and $L_{1}$ on the unit ball in ${\mathbb R}^{n}$, whose coefficients have a difference function that satisfies a Carleson-type condition, it is shown that a pointwise comparison concerning Lusin area integrals is valid. This result is used to prove that if $L_1u_1 = 0$ in $B_1(0)$ and $Su_{1}\in L^{\infty }(S^{n-1})$ then $u_{1}|_{S^{n-1}}=f$ lies in the exponential square class whenever $L_{0}$ is an operator so that $L_0u_0 = 0$ and $Su_{0}\in L^{\infty }$ implies $u_{0}|_{S^{n-1}}$ is in the exponential square class; here $S$ is the Lusin area integral. The exponential square theorem, first proved by Thomas Wolff for harmonic functions in the upper half-space, is proved on $B_{1}(0) $ for constant coefficient operator solutions, thus giving a family of operators for $L_{0}$. Methods of proof include martingales and stopping time arguments.
Keywords:
strictly elliptic operators unit ball mathbb whose coefficients have difference function satisfies carleson type condition shown pointwise comparison concerning lusin area integrals valid result prove infty n n lies exponential square class whenever operator infty implies n exponential square class here lusin area integral exponential square theorem first proved thomas wolff harmonic functions upper half space proved constant coefficient operator solutions giving family operators methods proof include martingales stopping time arguments
Affiliations des auteurs :
Caroline Sweezy 1
@article{10_4064_sm164_1_1,
author = {Caroline Sweezy},
title = {Elliptic functions, area integrals and the
exponential square class on $B_{1}(0) \subseteq {\Bbb R}^{n},n>2$},
journal = {Studia Mathematica},
pages = {1--28},
publisher = {mathdoc},
volume = {164},
number = {1},
year = {2004},
doi = {10.4064/sm164-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm164-1-1/}
}
TY - JOUR
AU - Caroline Sweezy
TI - Elliptic functions, area integrals and the
exponential square class on $B_{1}(0) \subseteq {\Bbb R}^{n},n>2$
JO - Studia Mathematica
PY - 2004
SP - 1
EP - 28
VL - 164
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm164-1-1/
DO - 10.4064/sm164-1-1
LA - en
ID - 10_4064_sm164_1_1
ER -
%0 Journal Article
%A Caroline Sweezy
%T Elliptic functions, area integrals and the
exponential square class on $B_{1}(0) \subseteq {\Bbb R}^{n},n>2$
%J Studia Mathematica
%D 2004
%P 1-28
%V 164
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm164-1-1/
%R 10.4064/sm164-1-1
%G en
%F 10_4064_sm164_1_1
Caroline Sweezy. Elliptic functions, area integrals and the
exponential square class on $B_{1}(0) \subseteq {\Bbb R}^{n},n>2$. Studia Mathematica, Tome 164 (2004) no. 1, pp. 1-28. doi: 10.4064/sm164-1-1
Cité par Sources :