On diffeomorphisms deleting weak compacta in Banach spaces
Studia Mathematica, Tome 162 (2004) no. 3, pp. 229-244
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We prove that if $X$ is an infinite-dimensional Banach space with $C^p$ smooth partitions of unity then $X$ and $X\setminus K$ are $C^p$ diffeomorphic for every weakly compact set $K\subset X$.
DOI : 10.4064/sm162-3-4
Keywords: prove infinite dimensional banach space smooth partitions unity setminus diffeomorphic every weakly compact set subset

Daniel Azagra  1   ; Alejandro Montesinos  1

1 Departamento de An{á}lisis Matem{á}tico Facultad de Ciencias Matem{á}ticas Universidad Complutense 28040 Madrid, Spain
@article{10_4064_sm162_3_4,
     author = {Daniel Azagra and Alejandro Montesinos},
     title = {On diffeomorphisms deleting weak compacta
 in {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {229--244},
     year = {2004},
     volume = {162},
     number = {3},
     doi = {10.4064/sm162-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm162-3-4/}
}
TY  - JOUR
AU  - Daniel Azagra
AU  - Alejandro Montesinos
TI  - On diffeomorphisms deleting weak compacta
 in Banach spaces
JO  - Studia Mathematica
PY  - 2004
SP  - 229
EP  - 244
VL  - 162
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm162-3-4/
DO  - 10.4064/sm162-3-4
LA  - en
ID  - 10_4064_sm162_3_4
ER  - 
%0 Journal Article
%A Daniel Azagra
%A Alejandro Montesinos
%T On diffeomorphisms deleting weak compacta
 in Banach spaces
%J Studia Mathematica
%D 2004
%P 229-244
%V 162
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm162-3-4/
%R 10.4064/sm162-3-4
%G en
%F 10_4064_sm162_3_4
Daniel Azagra; Alejandro Montesinos. On diffeomorphisms deleting weak compacta
 in Banach spaces. Studia Mathematica, Tome 162 (2004) no. 3, pp. 229-244. doi: 10.4064/sm162-3-4

Cité par Sources :