On a theorem of Vesentini
Studia Mathematica, Tome 162 (2004) no. 2, pp. 183-193 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let ${\mathcal A}$ be a Banach algebra over ${\mathbb C}$ with unit ${\bf 1}$ and $f: {\mathbb C} \to {\mathbb C}$ an entire function. Let ${\bf f}: {\mathcal A} \to {\mathcal A}$ be defined by $$ {\bf f} (a)={f}(a) \hskip 1em (a\in {\mathcal A}), $$ where $f(a)$ is given by the usual analytic calculus. The connections between the periods of $f$ and the periods of ${\bf f}$ are settled by a theorem of E. Vesentini. We give a new proof of this theorem and investigate further properties of periods of ${\bf f}$, for example in $C^\ast $-algebras.
DOI : 10.4064/sm162-2-6
Keywords: mathcal banach algebra mathbb unit mathbb mathbb entire function mathcal mathcal defined hskip mathcal where given usual analytic calculus connections between periods periods settled theorem nbsp vesentini proof theorem investigate further properties periods example ast algebras

Gerd Herzog  1   ; Christoph Schmoeger  1

1 Mathematisches Institut I Universität Karlsruhe D-76128 Karlsruhe, Germany
@article{10_4064_sm162_2_6,
     author = {Gerd Herzog and Christoph Schmoeger},
     title = {On a theorem of {Vesentini}},
     journal = {Studia Mathematica},
     pages = {183--193},
     year = {2004},
     volume = {162},
     number = {2},
     doi = {10.4064/sm162-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm162-2-6/}
}
TY  - JOUR
AU  - Gerd Herzog
AU  - Christoph Schmoeger
TI  - On a theorem of Vesentini
JO  - Studia Mathematica
PY  - 2004
SP  - 183
EP  - 193
VL  - 162
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm162-2-6/
DO  - 10.4064/sm162-2-6
LA  - en
ID  - 10_4064_sm162_2_6
ER  - 
%0 Journal Article
%A Gerd Herzog
%A Christoph Schmoeger
%T On a theorem of Vesentini
%J Studia Mathematica
%D 2004
%P 183-193
%V 162
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm162-2-6/
%R 10.4064/sm162-2-6
%G en
%F 10_4064_sm162_2_6
Gerd Herzog; Christoph Schmoeger. On a theorem of Vesentini. Studia Mathematica, Tome 162 (2004) no. 2, pp. 183-193. doi: 10.4064/sm162-2-6

Cité par Sources :