On a theorem of Vesentini
Studia Mathematica, Tome 162 (2004) no. 2, pp. 183-193
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let ${\mathcal A}$ be a Banach algebra over ${\mathbb C}$ with unit ${\bf 1}$ and $f: {\mathbb C} \to {\mathbb C}$ an entire function. Let ${\bf f}: {\mathcal A} \to {\mathcal A}$ be defined by $$ {\bf f} (a)={f}(a) \hskip 1em (a\in {\mathcal A}), $$ where $f(a)$ is given by the usual analytic calculus. The connections between the periods of $f$ and the periods of ${\bf f}$ are settled by a theorem of E. Vesentini. We give a new proof of this theorem and investigate further properties of periods of ${\bf f}$, for example in $C^\ast $-algebras.
Keywords:
mathcal banach algebra mathbb unit mathbb mathbb entire function mathcal mathcal defined hskip mathcal where given usual analytic calculus connections between periods periods settled theorem nbsp vesentini proof theorem investigate further properties periods example ast algebras
Affiliations des auteurs :
Gerd Herzog 1 ; Christoph Schmoeger 1
@article{10_4064_sm162_2_6,
author = {Gerd Herzog and Christoph Schmoeger},
title = {On a theorem of {Vesentini}},
journal = {Studia Mathematica},
pages = {183--193},
publisher = {mathdoc},
volume = {162},
number = {2},
year = {2004},
doi = {10.4064/sm162-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm162-2-6/}
}
Gerd Herzog; Christoph Schmoeger. On a theorem of Vesentini. Studia Mathematica, Tome 162 (2004) no. 2, pp. 183-193. doi: 10.4064/sm162-2-6
Cité par Sources :