Weak countable compactness implies quasi-weak drop property
Studia Mathematica, Tome 162 (2004) no. 2, pp. 175-182

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Every weakly countably compact closed convex set in a locally convex space has the quasi-weak drop property.
DOI : 10.4064/sm162-2-5
Keywords: every weakly countably compact closed convex set locally convex space has quasi weak drop property

J. H. Qiu 1

1 Department of Mathematics Suzhou University Suzhou, Jiangsu 215006 People's Republic of China
@article{10_4064_sm162_2_5,
     author = {J. H. Qiu},
     title = {Weak countable compactness implies
  quasi-weak drop property},
     journal = {Studia Mathematica},
     pages = {175--182},
     publisher = {mathdoc},
     volume = {162},
     number = {2},
     year = {2004},
     doi = {10.4064/sm162-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm162-2-5/}
}
TY  - JOUR
AU  - J. H. Qiu
TI  - Weak countable compactness implies
  quasi-weak drop property
JO  - Studia Mathematica
PY  - 2004
SP  - 175
EP  - 182
VL  - 162
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm162-2-5/
DO  - 10.4064/sm162-2-5
LA  - en
ID  - 10_4064_sm162_2_5
ER  - 
%0 Journal Article
%A J. H. Qiu
%T Weak countable compactness implies
  quasi-weak drop property
%J Studia Mathematica
%D 2004
%P 175-182
%V 162
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm162-2-5/
%R 10.4064/sm162-2-5
%G en
%F 10_4064_sm162_2_5
J. H. Qiu. Weak countable compactness implies
  quasi-weak drop property. Studia Mathematica, Tome 162 (2004) no. 2, pp. 175-182. doi: 10.4064/sm162-2-5

Cité par Sources :