Vitali Lemma approach to differentiation on a time scale
Studia Mathematica, Tome 162 (2004) no. 2, pp. 161-173 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

A new approach to differentiation on a time scale ${{\mathbb T}}$ is presented. We give a suitable generalization of the Vitali Lemma and apply it to prove that every increasing function $f:{{\mathbb T}}\rightarrow {\mathbb R}$ has a right derivative $f_{+}^{\prime } ( x) $ for $\mu _{\Delta } $-almost all $x\in {{\mathbb T}}$. Moreover, $\int _{[ a,b) }f_{+}^{\prime } ( x) \kern .16667em d\mu _{\Delta }\leq f ( b) -f ( a) .$
DOI : 10.4064/sm162-2-4
Keywords: approach differentiation time scale mathbb presented suitable generalization vitali lemma apply prove every increasing function mathbb rightarrow mathbb has right derivative prime delta almost mathbb moreover int prime kern delta leq f

Chuan Jen Chyan  1   ; Andrzej Fryszkowski  2

1 Department of Mathematics Tamkang University Taipei 251, Taiwan
2 Faculty of Mathematics and Information Science Warsaw University of Technology Plac Politechniki 1 00-661 Warszawa, Poland
@article{10_4064_sm162_2_4,
     author = {Chuan Jen Chyan and Andrzej Fryszkowski},
     title = {Vitali {Lemma} approach to differentiation 
 on a time scale},
     journal = {Studia Mathematica},
     pages = {161--173},
     year = {2004},
     volume = {162},
     number = {2},
     doi = {10.4064/sm162-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm162-2-4/}
}
TY  - JOUR
AU  - Chuan Jen Chyan
AU  - Andrzej Fryszkowski
TI  - Vitali Lemma approach to differentiation 
 on a time scale
JO  - Studia Mathematica
PY  - 2004
SP  - 161
EP  - 173
VL  - 162
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm162-2-4/
DO  - 10.4064/sm162-2-4
LA  - en
ID  - 10_4064_sm162_2_4
ER  - 
%0 Journal Article
%A Chuan Jen Chyan
%A Andrzej Fryszkowski
%T Vitali Lemma approach to differentiation 
 on a time scale
%J Studia Mathematica
%D 2004
%P 161-173
%V 162
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm162-2-4/
%R 10.4064/sm162-2-4
%G en
%F 10_4064_sm162_2_4
Chuan Jen Chyan; Andrzej Fryszkowski. Vitali Lemma approach to differentiation 
 on a time scale. Studia Mathematica, Tome 162 (2004) no. 2, pp. 161-173. doi: 10.4064/sm162-2-4

Cité par Sources :