Triebel–Lizorkin spaces with non-doubling measures
Studia Mathematica, Tome 162 (2004) no. 2, pp. 105-140
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Suppose that $\mu $ is a Radon measure on ${{{{\mathbb R}}}^d},$ which may be non-doubling. The only condition assumed on $\mu $ is a growth condition, namely, there is a constant $C_0>0$ such that for all $x\in \mathop {\rm supp}(\mu )$ and $r>0,$ $$\mu (B(x, r))\le C_0r^n,$$
where $0 n\leq d.$ The authors provide a theory of Triebel–Lizorkin spaces ${\dot F^s_{pq}(\mu )}$ for
$1 p \infty $, $1\le q\le \infty $ and $|s| \theta $, where $\theta >0$ is a real number which depends on the non-doubling measure $\mu $, $C_0$, $n$ and $d$. The method does not use the vector-valued maximal function inequality of Fefferman and Stein and is new even for the classical case. As applications, the lifting properties of these spaces by using the Riesz potential operators and the dual spaces are given.
Keywords:
suppose radon measure mathbb which may non doubling only condition assumed growth condition namely there constant mathop supp where leq authors provide theory triebel lizorkin spaces dot infty infty theta where theta real number which depends non doubling measure method does vector valued maximal function inequality fefferman stein even classical applications lifting properties these spaces using riesz potential operators dual spaces given
Affiliations des auteurs :
Yongsheng Han 1 ; Dachun Yang 2
@article{10_4064_sm162_2_2,
author = {Yongsheng Han and Dachun Yang},
title = {Triebel{\textendash}Lizorkin spaces with non-doubling measures},
journal = {Studia Mathematica},
pages = {105--140},
publisher = {mathdoc},
volume = {162},
number = {2},
year = {2004},
doi = {10.4064/sm162-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm162-2-2/}
}
TY - JOUR AU - Yongsheng Han AU - Dachun Yang TI - Triebel–Lizorkin spaces with non-doubling measures JO - Studia Mathematica PY - 2004 SP - 105 EP - 140 VL - 162 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm162-2-2/ DO - 10.4064/sm162-2-2 LA - en ID - 10_4064_sm162_2_2 ER -
Yongsheng Han; Dachun Yang. Triebel–Lizorkin spaces with non-doubling measures. Studia Mathematica, Tome 162 (2004) no. 2, pp. 105-140. doi: 10.4064/sm162-2-2
Cité par Sources :