Triebel–Lizorkin spaces with non-doubling measures
Studia Mathematica, Tome 162 (2004) no. 2, pp. 105-140

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Suppose that $\mu $ is a Radon measure on ${{{{\mathbb R}}}^d},$ which may be non-doubling. The only condition assumed on $\mu $ is a growth condition, namely, there is a constant $C_0>0$ such that for all $x\in \mathop {\rm supp}(\mu )$ and $r>0,$ $$\mu (B(x, r))\le C_0r^n,$$ where $0 n\leq d.$ The authors provide a theory of Triebel–Lizorkin spaces ${\dot F^s_{pq}(\mu )}$ for $1 p \infty $, $1\le q\le \infty $ and $|s| \theta $, where $\theta >0$ is a real number which depends on the non-doubling measure $\mu $, $C_0$, $n$ and $d$. The method does not use the vector-valued maximal function inequality of Fefferman and Stein and is new even for the classical case. As applications, the lifting properties of these spaces by using the Riesz potential operators and the dual spaces are given.
DOI : 10.4064/sm162-2-2
Keywords: suppose radon measure mathbb which may non doubling only condition assumed growth condition namely there constant mathop supp where leq authors provide theory triebel lizorkin spaces dot infty infty theta where theta real number which depends non doubling measure method does vector valued maximal function inequality fefferman stein even classical applications lifting properties these spaces using riesz potential operators dual spaces given

Yongsheng Han 1 ; Dachun Yang 2

1 Department of Mathematics Auburn University Auburn, AL 36849-5310, U.S.A.
2 Department of Mathematics Beijing Normal University Beijing 100875 People's Republic of China
@article{10_4064_sm162_2_2,
     author = {Yongsheng Han and Dachun Yang},
     title = {Triebel{\textendash}Lizorkin spaces with non-doubling measures},
     journal = {Studia Mathematica},
     pages = {105--140},
     publisher = {mathdoc},
     volume = {162},
     number = {2},
     year = {2004},
     doi = {10.4064/sm162-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm162-2-2/}
}
TY  - JOUR
AU  - Yongsheng Han
AU  - Dachun Yang
TI  - Triebel–Lizorkin spaces with non-doubling measures
JO  - Studia Mathematica
PY  - 2004
SP  - 105
EP  - 140
VL  - 162
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm162-2-2/
DO  - 10.4064/sm162-2-2
LA  - en
ID  - 10_4064_sm162_2_2
ER  - 
%0 Journal Article
%A Yongsheng Han
%A Dachun Yang
%T Triebel–Lizorkin spaces with non-doubling measures
%J Studia Mathematica
%D 2004
%P 105-140
%V 162
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm162-2-2/
%R 10.4064/sm162-2-2
%G en
%F 10_4064_sm162_2_2
Yongsheng Han; Dachun Yang. Triebel–Lizorkin spaces with non-doubling measures. Studia Mathematica, Tome 162 (2004) no. 2, pp. 105-140. doi: 10.4064/sm162-2-2

Cité par Sources :