1School of Science Xi'an Jiaotong University Xi'an, 710049, P.R. China and Department of Mathematics Shanxi Teachers University Linfen, 041004, P.R. China. 2Department of Mathematics Shanxi University Taiyuan, 030000, P.R. China 3School of Science Xi'an Jiaotong University Xi'an, 710049, P.R. China
Studia Mathematica, Tome 162 (2004) no. 2, pp. 97-104
We characterize surjective nonlinear maps ${\mit \Phi } $ between unital C*-algebras ${\mathcal A}$ and ${\mathcal B}$ that satisfy $w({\mit \Phi } (A)-{\mit \Phi } (B))=w(A-B)$ for all $A,B\in {\mathcal A}$ under a mild condition that ${\mit \Phi } (I)-{\mit \Phi } (0)$ belongs to the center of ${\mathcal B}$, where $w(A)$ is the numerical radius of $A$ and $I$ is the unit of ${\mathcal A}$.
Keywords:
characterize surjective nonlinear maps mit phi between unital c* algebras mathcal mathcal satisfy mit phi mit phi a b mathcal under mild condition mit phi mit phi belongs center mathcal where numerical radius unit mathcal
1
School of Science Xi'an Jiaotong University Xi'an, 710049, P.R. China and Department of Mathematics Shanxi Teachers University Linfen, 041004, P.R. China.
2
Department of Mathematics Shanxi University Taiyuan, 030000, P.R. China
3
School of Science Xi'an Jiaotong University Xi'an, 710049, P.R. China
@article{10_4064_sm162_2_1,
author = {Zhaofang Bai and Jinchuan Hou and Zongben Xu},
title = {Maps preserving numerical radius distance on
${\rm C}^*$-algebras},
journal = {Studia Mathematica},
pages = {97--104},
year = {2004},
volume = {162},
number = {2},
doi = {10.4064/sm162-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm162-2-1/}
}
TY - JOUR
AU - Zhaofang Bai
AU - Jinchuan Hou
AU - Zongben Xu
TI - Maps preserving numerical radius distance on
${\rm C}^*$-algebras
JO - Studia Mathematica
PY - 2004
SP - 97
EP - 104
VL - 162
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm162-2-1/
DO - 10.4064/sm162-2-1
LA - en
ID - 10_4064_sm162_2_1
ER -
%0 Journal Article
%A Zhaofang Bai
%A Jinchuan Hou
%A Zongben Xu
%T Maps preserving numerical radius distance on
${\rm C}^*$-algebras
%J Studia Mathematica
%D 2004
%P 97-104
%V 162
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm162-2-1/
%R 10.4064/sm162-2-1
%G en
%F 10_4064_sm162_2_1
Zhaofang Bai; Jinchuan Hou; Zongben Xu. Maps preserving numerical radius distance on
${\rm C}^*$-algebras. Studia Mathematica, Tome 162 (2004) no. 2, pp. 97-104. doi: 10.4064/sm162-2-1