Maps preserving numerical radius distance on ${\rm C}^*$-algebras
Studia Mathematica, Tome 162 (2004) no. 2, pp. 97-104

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We characterize surjective nonlinear maps ${\mit \Phi } $ between unital C*-algebras ${\mathcal A}$ and ${\mathcal B}$ that satisfy $w({\mit \Phi } (A)-{\mit \Phi } (B))=w(A-B)$ for all $A,B\in {\mathcal A}$ under a mild condition that ${\mit \Phi } (I)-{\mit \Phi } (0)$ belongs to the center of ${\mathcal B}$, where $w(A)$ is the numerical radius of $A$ and $I$ is the unit of ${\mathcal A}$.
DOI : 10.4064/sm162-2-1
Keywords: characterize surjective nonlinear maps mit phi between unital c* algebras mathcal mathcal satisfy mit phi mit phi a b mathcal under mild condition mit phi mit phi belongs center mathcal where numerical radius unit mathcal

Zhaofang Bai 1 ; Jinchuan Hou 2 ; Zongben Xu 3

1 School of Science Xi'an Jiaotong University Xi'an, 710049, P.R. China and Department of Mathematics Shanxi Teachers University Linfen, 041004, P.R. China.
2 Department of Mathematics Shanxi University Taiyuan, 030000, P.R. China
3 School of Science Xi'an Jiaotong University Xi'an, 710049, P.R. China
@article{10_4064_sm162_2_1,
     author = {Zhaofang Bai and Jinchuan Hou and Zongben Xu},
     title = {Maps preserving numerical radius distance on
 ${\rm C}^*$-algebras},
     journal = {Studia Mathematica},
     pages = {97--104},
     publisher = {mathdoc},
     volume = {162},
     number = {2},
     year = {2004},
     doi = {10.4064/sm162-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm162-2-1/}
}
TY  - JOUR
AU  - Zhaofang Bai
AU  - Jinchuan Hou
AU  - Zongben Xu
TI  - Maps preserving numerical radius distance on
 ${\rm C}^*$-algebras
JO  - Studia Mathematica
PY  - 2004
SP  - 97
EP  - 104
VL  - 162
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm162-2-1/
DO  - 10.4064/sm162-2-1
LA  - en
ID  - 10_4064_sm162_2_1
ER  - 
%0 Journal Article
%A Zhaofang Bai
%A Jinchuan Hou
%A Zongben Xu
%T Maps preserving numerical radius distance on
 ${\rm C}^*$-algebras
%J Studia Mathematica
%D 2004
%P 97-104
%V 162
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm162-2-1/
%R 10.4064/sm162-2-1
%G en
%F 10_4064_sm162_2_1
Zhaofang Bai; Jinchuan Hou; Zongben Xu. Maps preserving numerical radius distance on
 ${\rm C}^*$-algebras. Studia Mathematica, Tome 162 (2004) no. 2, pp. 97-104. doi: 10.4064/sm162-2-1

Cité par Sources :