Unitary Banach algebras
Studia Mathematica, Tome 162 (2004) no. 1, pp. 25-51
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In a Banach algebra an invertible element which has norm one and whose inverse has norm one is called unitary. The algebra is unitary if the closed convex hull of the unitary elements is the closed unit ball. The main examples are the $C^*$-algebras and the $\ell _1$ group algebra of a group. In this paper, different characterizations of unitary algebras are obtained in terms of numerical ranges, dentability and holomorphy. In the process some new characterizations of $C^*$-algebras are given.
Keywords:
banach algebra invertible element which has norm whose inverse has norm called unitary algebra unitary closed convex hull unitary elements closed unit ball main examples * algebras ell group algebra group paper different characterizations unitary algebras obtained terms numerical ranges dentability holomorphy process characterizations * algebras given
Affiliations des auteurs :
Julio Becerra Guerrero 1 ; Simon Cowell 2 ; Ángel Rodríguez Palacios 3 ; Geoffrey V. Wood 2
@article{10_4064_sm162_1_3,
author = {Julio Becerra Guerrero and Simon Cowell and \'Angel Rodr{\'\i}guez Palacios and Geoffrey V. Wood},
title = {Unitary {Banach} algebras},
journal = {Studia Mathematica},
pages = {25--51},
publisher = {mathdoc},
volume = {162},
number = {1},
year = {2004},
doi = {10.4064/sm162-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm162-1-3/}
}
TY - JOUR AU - Julio Becerra Guerrero AU - Simon Cowell AU - Ángel Rodríguez Palacios AU - Geoffrey V. Wood TI - Unitary Banach algebras JO - Studia Mathematica PY - 2004 SP - 25 EP - 51 VL - 162 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm162-1-3/ DO - 10.4064/sm162-1-3 LA - en ID - 10_4064_sm162_1_3 ER -
%0 Journal Article %A Julio Becerra Guerrero %A Simon Cowell %A Ángel Rodríguez Palacios %A Geoffrey V. Wood %T Unitary Banach algebras %J Studia Mathematica %D 2004 %P 25-51 %V 162 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm162-1-3/ %R 10.4064/sm162-1-3 %G en %F 10_4064_sm162_1_3
Julio Becerra Guerrero; Simon Cowell; Ángel Rodríguez Palacios; Geoffrey V. Wood. Unitary Banach algebras. Studia Mathematica, Tome 162 (2004) no. 1, pp. 25-51. doi: 10.4064/sm162-1-3
Cité par Sources :