The theorem of the complement for a quasi subanalytic set
Studia Mathematica, Tome 161 (2004) no. 3, pp. 225-247

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X\subset ({\mathbb R}^n,0)$ be a germ of a set at the origin. We suppose $X$ is described by a subalgebra, $C_n(M)$, of the algebra of germs of $C^{\infty }$ functions at the origin (see 2.1). This algebra is quasianalytic. We show that the germ $X$ has almost all the properties of germs of semianalytic sets. Moreover, we study the projections of such germs and prove a version of Gabrielov's theorem.
DOI : 10.4064/sm161-3-2
Keywords: subset mathbb germ set origin suppose described subalgebra algebra germs infty functions origin see algebra quasianalytic germ has almost properties germs semianalytic sets moreover study projections germs prove version gabrielovs theorem

Abdelhafed Elkhadiri 1

1 Faculty of Sciences Department of Mathematics B.P. 133, Kénitra, 14000, Morocco
@article{10_4064_sm161_3_2,
     author = {Abdelhafed Elkhadiri},
     title = {The theorem of the complement
 for a quasi subanalytic set},
     journal = {Studia Mathematica},
     pages = {225--247},
     publisher = {mathdoc},
     volume = {161},
     number = {3},
     year = {2004},
     doi = {10.4064/sm161-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm161-3-2/}
}
TY  - JOUR
AU  - Abdelhafed Elkhadiri
TI  - The theorem of the complement
 for a quasi subanalytic set
JO  - Studia Mathematica
PY  - 2004
SP  - 225
EP  - 247
VL  - 161
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm161-3-2/
DO  - 10.4064/sm161-3-2
LA  - en
ID  - 10_4064_sm161_3_2
ER  - 
%0 Journal Article
%A Abdelhafed Elkhadiri
%T The theorem of the complement
 for a quasi subanalytic set
%J Studia Mathematica
%D 2004
%P 225-247
%V 161
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm161-3-2/
%R 10.4064/sm161-3-2
%G en
%F 10_4064_sm161_3_2
Abdelhafed Elkhadiri. The theorem of the complement
 for a quasi subanalytic set. Studia Mathematica, Tome 161 (2004) no. 3, pp. 225-247. doi: 10.4064/sm161-3-2

Cité par Sources :