On the $(C,\alpha )$ Cesàro bounded operators
Studia Mathematica, Tome 161 (2004) no. 2, pp. 163-175
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For a given linear operator $T$ in a complex Banach space $X$ and $\alpha \in {{\mathbb C}}$ with $\Re (\alpha )>0$, we define the $n$th Cesàro mean of order $\alpha $ of the powers of $T$ by $ M_{n}^{\alpha }=(A_{n}^{\alpha })^{-1} \sum _{k=0}^{n}A_{n-k}^{\alpha -1}T^{k}$. For $\alpha =1$, we find $M_{n}^{1}=(n+1)^{-1}\sum _{k=0}^{n}T^k$, the usual Cesàro mean. We give necessary and sufficient conditions for a $(C,\alpha )$ bounded operator to be $(C,\alpha )$ strongly (weakly) ergodic.
Keywords:
given linear operator complex banach space alpha mathbb alpha define nth ces mean order alpha powers alpha alpha sum n k alpha alpha sum usual ces mean necessary sufficient conditions alpha bounded operator alpha strongly weakly ergodic
Affiliations des auteurs :
Elmouloudi Ed-dari 1
@article{10_4064_sm161_2_4,
author = {Elmouloudi Ed-dari},
title = {On the $(C,\alpha )$ {Ces\`aro} bounded operators},
journal = {Studia Mathematica},
pages = {163--175},
publisher = {mathdoc},
volume = {161},
number = {2},
year = {2004},
doi = {10.4064/sm161-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm161-2-4/}
}
Elmouloudi Ed-dari. On the $(C,\alpha )$ Cesàro bounded operators. Studia Mathematica, Tome 161 (2004) no. 2, pp. 163-175. doi: 10.4064/sm161-2-4
Cité par Sources :