On the $(C,\alpha )$ Cesàro bounded operators
Studia Mathematica, Tome 161 (2004) no. 2, pp. 163-175

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a given linear operator $T$ in a complex Banach space $X$ and $\alpha \in {{\mathbb C}}$ with $\Re (\alpha )>0$, we define the $n$th Cesàro mean of order $\alpha $ of the powers of $T$ by $ M_{n}^{\alpha }=(A_{n}^{\alpha })^{-1} \sum _{k=0}^{n}A_{n-k}^{\alpha -1}T^{k}$. For $\alpha =1$, we find $M_{n}^{1}=(n+1)^{-1}\sum _{k=0}^{n}T^k$, the usual Cesàro mean. We give necessary and sufficient conditions for a $(C,\alpha )$ bounded operator to be $(C,\alpha )$ strongly (weakly) ergodic.
DOI : 10.4064/sm161-2-4
Keywords: given linear operator complex banach space alpha mathbb alpha define nth ces mean order alpha powers alpha alpha sum n k alpha alpha sum usual ces mean necessary sufficient conditions alpha bounded operator alpha strongly weakly ergodic

Elmouloudi Ed-dari 1

1 Faculté des sciences Jean Perrin Université D'Artois SP 18 62307 Lens Cedex, France
@article{10_4064_sm161_2_4,
     author = {Elmouloudi Ed-dari},
     title = {On the $(C,\alpha )$ {Ces\`aro} bounded operators},
     journal = {Studia Mathematica},
     pages = {163--175},
     publisher = {mathdoc},
     volume = {161},
     number = {2},
     year = {2004},
     doi = {10.4064/sm161-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm161-2-4/}
}
TY  - JOUR
AU  - Elmouloudi Ed-dari
TI  - On the $(C,\alpha )$ Cesàro bounded operators
JO  - Studia Mathematica
PY  - 2004
SP  - 163
EP  - 175
VL  - 161
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm161-2-4/
DO  - 10.4064/sm161-2-4
LA  - en
ID  - 10_4064_sm161_2_4
ER  - 
%0 Journal Article
%A Elmouloudi Ed-dari
%T On the $(C,\alpha )$ Cesàro bounded operators
%J Studia Mathematica
%D 2004
%P 163-175
%V 161
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm161-2-4/
%R 10.4064/sm161-2-4
%G en
%F 10_4064_sm161_2_4
Elmouloudi Ed-dari. On the $(C,\alpha )$ Cesàro bounded operators. Studia Mathematica, Tome 161 (2004) no. 2, pp. 163-175. doi: 10.4064/sm161-2-4

Cité par Sources :