Schrödinger equation on the Heisenberg group
Studia Mathematica, Tome 161 (2004) no. 2, pp. 99-111

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $L$ be the full laplacian on the Heisenberg group ${{\mathbb H}}^n$ of arbitrary dimension $n$. Then for $f \in L^2({{\mathbb H}}^n)$ such that ${(I-L)}^{s / 2} f \in L^2({{\mathbb H}}^n)$ for some $s>{1 / 2}$ and for every $\phi \in C_{\rm c}({{\mathbb H}}^n)$ we have $$ \int _{{{\mathbb H}}^n} |\phi (x)| \mathop {\rm sup}_{0 t \leq 1} |e^{\sqrt{-1}\, tL}f(x)|^2\, dx \leq C_{\phi }{\| f\| }^2_{W^s}. $$
DOI : 10.4064/sm161-2-1
Mots-clés : full laplacian heisenberg group mathbb arbitrary dimension mathbb i l mathbb every phi mathbb have int mathbb phi mathop sup leq sqrt leq phi

Jacek Zienkiewicz 1

1 Institute of Mathematics University of Wrocław Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland
@article{10_4064_sm161_2_1,
     author = {Jacek Zienkiewicz},
     title = {Schr\"odinger equation on the {Heisenberg} group},
     journal = {Studia Mathematica},
     pages = {99--111},
     publisher = {mathdoc},
     volume = {161},
     number = {2},
     year = {2004},
     doi = {10.4064/sm161-2-1},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm161-2-1/}
}
TY  - JOUR
AU  - Jacek Zienkiewicz
TI  - Schrödinger equation on the Heisenberg group
JO  - Studia Mathematica
PY  - 2004
SP  - 99
EP  - 111
VL  - 161
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm161-2-1/
DO  - 10.4064/sm161-2-1
LA  - de
ID  - 10_4064_sm161_2_1
ER  - 
%0 Journal Article
%A Jacek Zienkiewicz
%T Schrödinger equation on the Heisenberg group
%J Studia Mathematica
%D 2004
%P 99-111
%V 161
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm161-2-1/
%R 10.4064/sm161-2-1
%G de
%F 10_4064_sm161_2_1
Jacek Zienkiewicz. Schrödinger equation on the Heisenberg group. Studia Mathematica, Tome 161 (2004) no. 2, pp. 99-111. doi: 10.4064/sm161-2-1

Cité par Sources :