Schrödinger equation on the Heisenberg group
Studia Mathematica, Tome 161 (2004) no. 2, pp. 99-111
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $L$ be the full laplacian on the Heisenberg group ${{\mathbb H}}^n$ of arbitrary dimension $n$. Then for $f \in L^2({{\mathbb H}}^n)$ such that ${(I-L)}^{s / 2} f \in L^2({{\mathbb H}}^n)$ for some $s>{1 / 2}$ and for every $\phi \in C_{\rm c}({{\mathbb H}}^n)$ we have $$ \int _{{{\mathbb H}}^n} |\phi (x)| \mathop {\rm sup}_{0 t \leq 1}
|e^{\sqrt{-1}\, tL}f(x)|^2\, dx \leq C_{\phi }{\| f\| }^2_{W^s}. $$
Mots-clés :
full laplacian heisenberg group mathbb arbitrary dimension mathbb i l mathbb every phi mathbb have int mathbb phi mathop sup leq sqrt leq phi
Affiliations des auteurs :
Jacek Zienkiewicz 1
@article{10_4064_sm161_2_1,
author = {Jacek Zienkiewicz},
title = {Schr\"odinger equation on the {Heisenberg} group},
journal = {Studia Mathematica},
pages = {99--111},
publisher = {mathdoc},
volume = {161},
number = {2},
year = {2004},
doi = {10.4064/sm161-2-1},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm161-2-1/}
}
Jacek Zienkiewicz. Schrödinger equation on the Heisenberg group. Studia Mathematica, Tome 161 (2004) no. 2, pp. 99-111. doi: 10.4064/sm161-2-1
Cité par Sources :