Ideals in big Lipschitz algebras of analytic functions
Studia Mathematica, Tome 161 (2004) no. 1, pp. 33-59

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For $0\gamma\le1$, let ${\mit\Lambda}_{\gamma}^+$ be the big Lipschitz algebra of functions analytic on the open unit disc ${\mathbb D}$ which satisfy a Lipschitz condition of order $\gamma$ on $\overline{\mathbb D}$. For a closed set $E$ on the unit circle ${\mathbb T}$ and an inner function $Q$, let $J_{\gamma}(E,Q)$ be the closed ideal in ${\mit\Lambda}_{\gamma}^+$ consisting of those functions $f\in{\mit\Lambda}_{\gamma}^+$ for which(i) $f=0 \hbox{ on }E$,(ii) $|f(z)-f(w)|=o(|z-w|^{\gamma})$ as $d(z,E),d(w,E)\rightarrow0$,(iii) $f/Q\in{\mit\Lambda}_{\gamma}^+$. Also, for a closed ideal $I$ in ${\mit\Lambda}_{\gamma}^+$, let $E_I=\{z\in{\mathbb T}:f(z)=0\hbox{ for every }f\in I\}$ and let $Q_I$ be the greatest common divisor of the inner parts of non-zero functions in $I$. Our main conjecture about the ideal structure in ${\mit\Lambda}_{\gamma}^+$ is that $J_{\gamma}(E_I,Q_I)\subseteq I$ for every closed ideal $I$ in ${\mit\Lambda}_{\gamma}^+$. We confirm the conjecture for closed ideals $I$ in ${\mit\Lambda}_{\gamma}^+$ for which $E_I$ is countable and obtain partial results in the case where $Q_I=1$. Moreover, we show that every \wks closed ideal in ${\mit\Lambda}_{\gamma}^+$ is of the form $\{f\in{\mit\Lambda}_{\gamma}^+:f=0$ on $E$ and $f/Q\in{\mit\Lambda}_{\gamma}^+\}$ for some closed set $E\subseteq{\mathbb T}$ and some inner function $Q$.
DOI : 10.4064/sm161-1-3
Keywords: gamma mit lambda gamma lipschitz algebra functions analytic unit disc mathbb which satisfy lipschitz condition order gamma overline mathbb closed set unit circle mathbb inner function gamma closed ideal mit lambda gamma consisting those functions mit lambda gamma which hbox f z w gamma rightarrow iii mit lambda gamma closed ideal mit lambda gamma mathbb hbox every greatest common divisor inner parts non zero functions main conjecture about ideal structure mit lambda gamma gamma i subseteq every closed ideal mit lambda gamma confirm conjecture closed ideals mit lambda gamma which countable obtain partial results where moreover every wks closed ideal mit lambda gamma form mit lambda gamma mit lambda gamma closed set subseteq mathbb inner function

Thomas Vils Pedersen 1

1 Department of Mathematics and Physics The Royal Veterinary and Agricultural University Thorvaldsensvej 40 DK-1871 Frederiksberg C, Denmark
@article{10_4064_sm161_1_3,
     author = {Thomas Vils Pedersen},
     title = {Ideals in big {Lipschitz} algebras of analytic functions},
     journal = {Studia Mathematica},
     pages = {33--59},
     publisher = {mathdoc},
     volume = {161},
     number = {1},
     year = {2004},
     doi = {10.4064/sm161-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm161-1-3/}
}
TY  - JOUR
AU  - Thomas Vils Pedersen
TI  - Ideals in big Lipschitz algebras of analytic functions
JO  - Studia Mathematica
PY  - 2004
SP  - 33
EP  - 59
VL  - 161
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm161-1-3/
DO  - 10.4064/sm161-1-3
LA  - en
ID  - 10_4064_sm161_1_3
ER  - 
%0 Journal Article
%A Thomas Vils Pedersen
%T Ideals in big Lipschitz algebras of analytic functions
%J Studia Mathematica
%D 2004
%P 33-59
%V 161
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm161-1-3/
%R 10.4064/sm161-1-3
%G en
%F 10_4064_sm161_1_3
Thomas Vils Pedersen. Ideals in big Lipschitz algebras of analytic functions. Studia Mathematica, Tome 161 (2004) no. 1, pp. 33-59. doi: 10.4064/sm161-1-3

Cité par Sources :