Ideals in big Lipschitz algebras of analytic functions
Studia Mathematica, Tome 161 (2004) no. 1, pp. 33-59
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For
$0\gamma\le1$, let ${\mit\Lambda}_{\gamma}^+$ be the big Lipschitz algebra of functions
analytic
on the open unit disc ${\mathbb D}$ which satisfy a Lipschitz condition of order $\gamma$
on $\overline{\mathbb D}$. For a closed set $E$ on the unit circle ${\mathbb T}$ and
an inner function $Q$,
let $J_{\gamma}(E,Q)$ be the closed ideal in ${\mit\Lambda}_{\gamma}^+$ consisting of those functions
$f\in{\mit\Lambda}_{\gamma}^+$ for which(i) $f=0 \hbox{ on }E$,(ii) $|f(z)-f(w)|=o(|z-w|^{\gamma})$ as $d(z,E),d(w,E)\rightarrow0$,(iii) $f/Q\in{\mit\Lambda}_{\gamma}^+$.
Also, for a closed ideal $I$ in ${\mit\Lambda}_{\gamma}^+$, let
$E_I=\{z\in{\mathbb T}:f(z)=0\hbox{ for every }f\in I\}$ and let $Q_I$ be
the greatest common divisor of the inner parts of non-zero
functions in $I$.
Our main conjecture about the ideal structure in ${\mit\Lambda}_{\gamma}^+$ is that
$J_{\gamma}(E_I,Q_I)\subseteq I$
for every closed ideal $I$ in ${\mit\Lambda}_{\gamma}^+$. We confirm the
conjecture for closed ideals $I$ in ${\mit\Lambda}_{\gamma}^+$ for which $E_I$ is countable and
obtain partial results in the case where $Q_I=1$.
Moreover, we show that every \wks closed ideal in ${\mit\Lambda}_{\gamma}^+$ is of the form
$\{f\in{\mit\Lambda}_{\gamma}^+:f=0$ on $E$ and $f/Q\in{\mit\Lambda}_{\gamma}^+\}$
for some closed set $E\subseteq{\mathbb T}$ and some inner function $Q$.
Keywords:
gamma mit lambda gamma lipschitz algebra functions analytic unit disc mathbb which satisfy lipschitz condition order gamma overline mathbb closed set unit circle mathbb inner function gamma closed ideal mit lambda gamma consisting those functions mit lambda gamma which hbox f z w gamma rightarrow iii mit lambda gamma closed ideal mit lambda gamma mathbb hbox every greatest common divisor inner parts non zero functions main conjecture about ideal structure mit lambda gamma gamma i subseteq every closed ideal mit lambda gamma confirm conjecture closed ideals mit lambda gamma which countable obtain partial results where moreover every wks closed ideal mit lambda gamma form mit lambda gamma mit lambda gamma closed set subseteq mathbb inner function
Affiliations des auteurs :
Thomas Vils Pedersen 1
@article{10_4064_sm161_1_3,
author = {Thomas Vils Pedersen},
title = {Ideals in big {Lipschitz} algebras of analytic functions},
journal = {Studia Mathematica},
pages = {33--59},
publisher = {mathdoc},
volume = {161},
number = {1},
year = {2004},
doi = {10.4064/sm161-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm161-1-3/}
}
Thomas Vils Pedersen. Ideals in big Lipschitz algebras of analytic functions. Studia Mathematica, Tome 161 (2004) no. 1, pp. 33-59. doi: 10.4064/sm161-1-3
Cité par Sources :