Tiling and spectral properties of
near-cubic domains
Studia Mathematica, Tome 160 (2004) no. 3, pp. 287-299
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that if a measurable domain tiles ${\mathbb R}$ or ${\mathbb R}^2$ by translations, and if it is “close enough” to a line segment or a square respectively, then it admits a lattice tiling. We also prove a similar result for spectral sets in dimension 1, and give an example showing that there is no analogue of the tiling result in dimensions 3 and higher.
Keywords:
prove measurable domain tiles mathbb mathbb translations close enough line segment square respectively admits lattice tiling prove similar result spectral sets dimension example showing there analogue tiling result dimensions higher
Affiliations des auteurs :
Mihail N. Kolountzakis 1 ; Izabella /Laba 2
@article{10_4064_sm160_3_6,
author = {Mihail N. Kolountzakis and Izabella /Laba},
title = {Tiling and spectral properties of
near-cubic domains},
journal = {Studia Mathematica},
pages = {287--299},
publisher = {mathdoc},
volume = {160},
number = {3},
year = {2004},
doi = {10.4064/sm160-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm160-3-6/}
}
TY - JOUR AU - Mihail N. Kolountzakis AU - Izabella /Laba TI - Tiling and spectral properties of near-cubic domains JO - Studia Mathematica PY - 2004 SP - 287 EP - 299 VL - 160 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm160-3-6/ DO - 10.4064/sm160-3-6 LA - en ID - 10_4064_sm160_3_6 ER -
Mihail N. Kolountzakis; Izabella /Laba. Tiling and spectral properties of near-cubic domains. Studia Mathematica, Tome 160 (2004) no. 3, pp. 287-299. doi: 10.4064/sm160-3-6
Cité par Sources :