Restriction theorems for the Fourier transform
to homogeneous polynomial surfaces in ${\Bbb R}^{3}$
Studia Mathematica, Tome 160 (2004) no. 3, pp. 249-265
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\varphi:\mathbb{R}^{2}\rightarrow \mathbb{R}$ be a homogeneous
polynomial function of degree $m\geq 2,$ let ${{\mit\Sigma}} =\{(
x,\varphi (x)):|x| \leq 1\} $ and let $
\sigma $ be the Borel measure on ${{\mit\Sigma}} $ defined by $\sigma(
A) =\int_{B}\chi _{A}(x,\varphi (x)) \,dx$
where $B$ is the unit open ball in $\mathbb{R}^{2}$ and $dx$ denotes the
Lebesgue measure on $\mathbb{R}^{2}.$ We show that the
composition of the Fourier transform in $\mathbb{R}^{3}$ followed by
restriction to ${{\mit\Sigma}} $ defines a bounded operator from $L^{p}(
\mathbb{R}^{3}) $ to $L^{q}({{\mit\Sigma}},d\sigma) $ for
certain $p,q.$ For $m\geq 6$ the results are sharp except for some border
points.
Keywords:
varphi mathbb rightarrow mathbb homogeneous polynomial function degree geq mit sigma varphi leq sigma borel measure mit sigma defined sigma int chi varphi where unit ball mathbb denotes lebesgue measure mathbb composition fourier transform mathbb followed restriction mit sigma defines bounded operator mathbb mit sigma sigma certain geq results sharp except border points
Affiliations des auteurs :
E. Ferreyra 1 ; T. Godoy 1 ; M. Urciuolo 1
@article{10_4064_sm160_3_4,
author = {E. Ferreyra and T. Godoy and M. Urciuolo},
title = {Restriction theorems for the {Fourier} transform
to homogeneous polynomial surfaces in ${\Bbb R}^{3}$},
journal = {Studia Mathematica},
pages = {249--265},
publisher = {mathdoc},
volume = {160},
number = {3},
year = {2004},
doi = {10.4064/sm160-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm160-3-4/}
}
TY - JOUR
AU - E. Ferreyra
AU - T. Godoy
AU - M. Urciuolo
TI - Restriction theorems for the Fourier transform
to homogeneous polynomial surfaces in ${\Bbb R}^{3}$
JO - Studia Mathematica
PY - 2004
SP - 249
EP - 265
VL - 160
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm160-3-4/
DO - 10.4064/sm160-3-4
LA - en
ID - 10_4064_sm160_3_4
ER -
%0 Journal Article
%A E. Ferreyra
%A T. Godoy
%A M. Urciuolo
%T Restriction theorems for the Fourier transform
to homogeneous polynomial surfaces in ${\Bbb R}^{3}$
%J Studia Mathematica
%D 2004
%P 249-265
%V 160
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm160-3-4/
%R 10.4064/sm160-3-4
%G en
%F 10_4064_sm160_3_4
E. Ferreyra; T. Godoy; M. Urciuolo. Restriction theorems for the Fourier transform
to homogeneous polynomial surfaces in ${\Bbb R}^{3}$. Studia Mathematica, Tome 160 (2004) no. 3, pp. 249-265. doi: 10.4064/sm160-3-4
Cité par Sources :