Restriction theorems for the Fourier transform to homogeneous polynomial surfaces in ${\Bbb R}^{3}$
Studia Mathematica, Tome 160 (2004) no. 3, pp. 249-265

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\varphi:\mathbb{R}^{2}\rightarrow \mathbb{R}$ be a homogeneous polynomial function of degree $m\geq 2,$ let ${{\mit\Sigma}} =\{( x,\varphi (x)):|x| \leq 1\} $ and let $ \sigma $ be the Borel measure on ${{\mit\Sigma}} $ defined by $\sigma( A) =\int_{B}\chi _{A}(x,\varphi (x)) \,dx$ where $B$ is the unit open ball in $\mathbb{R}^{2}$ and $dx$ denotes the Lebesgue measure on $\mathbb{R}^{2}.$ We show that the composition of the Fourier transform in $\mathbb{R}^{3}$ followed by restriction to ${{\mit\Sigma}} $ defines a bounded operator from $L^{p}( \mathbb{R}^{3}) $ to $L^{q}({{\mit\Sigma}},d\sigma) $ for certain $p,q.$ For $m\geq 6$ the results are sharp except for some border points.
DOI : 10.4064/sm160-3-4
Keywords: varphi mathbb rightarrow mathbb homogeneous polynomial function degree geq mit sigma varphi leq sigma borel measure mit sigma defined sigma int chi varphi where unit ball mathbb denotes lebesgue measure mathbb composition fourier transform mathbb followed restriction mit sigma defines bounded operator mathbb mit sigma sigma certain geq results sharp except border points

E. Ferreyra 1 ; T. Godoy 1 ; M. Urciuolo 1

1 FaMAF, Universidad Nacional de Córdoba and CIEM-CONICET Ciudad Universitaria 5000 Córdoba, Argentina
@article{10_4064_sm160_3_4,
     author = {E. Ferreyra and T. Godoy and M. Urciuolo},
     title = {Restriction theorems for the {Fourier} transform
to homogeneous polynomial surfaces in ${\Bbb R}^{3}$},
     journal = {Studia Mathematica},
     pages = {249--265},
     publisher = {mathdoc},
     volume = {160},
     number = {3},
     year = {2004},
     doi = {10.4064/sm160-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm160-3-4/}
}
TY  - JOUR
AU  - E. Ferreyra
AU  - T. Godoy
AU  - M. Urciuolo
TI  - Restriction theorems for the Fourier transform
to homogeneous polynomial surfaces in ${\Bbb R}^{3}$
JO  - Studia Mathematica
PY  - 2004
SP  - 249
EP  - 265
VL  - 160
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm160-3-4/
DO  - 10.4064/sm160-3-4
LA  - en
ID  - 10_4064_sm160_3_4
ER  - 
%0 Journal Article
%A E. Ferreyra
%A T. Godoy
%A M. Urciuolo
%T Restriction theorems for the Fourier transform
to homogeneous polynomial surfaces in ${\Bbb R}^{3}$
%J Studia Mathematica
%D 2004
%P 249-265
%V 160
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm160-3-4/
%R 10.4064/sm160-3-4
%G en
%F 10_4064_sm160_3_4
E. Ferreyra; T. Godoy; M. Urciuolo. Restriction theorems for the Fourier transform
to homogeneous polynomial surfaces in ${\Bbb R}^{3}$. Studia Mathematica, Tome 160 (2004) no. 3, pp. 249-265. doi: 10.4064/sm160-3-4

Cité par Sources :