Non-normal elements in Banach $^*$-algebras
Studia Mathematica, Tome 160 (2004) no. 3, pp. 201-204
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $A$ be a Banach $^*$-algebra with an identity, continuous involution,
center $Z$ and set of self-adjoint elements ${\mit\Sigma}$. Let $h\in{\mit\Sigma}$.
The set of $v\in{\mit\Sigma}$ such that $(h+iv)^n$ is normal for no positive
integer $n$ is dense in ${\mit\Sigma}$ if and only if $h\not\in Z$.
The case where $A$ has no identity is also treated.
Mots-clés :
banach * algebra identity continuous involution center set self adjoint elements mit sigma mit sigma set mit sigma normal positive integer dense mit sigma only where has identity treated
Affiliations des auteurs :
B. Yood 1
@article{10_4064_sm160_3_1,
author = {B. Yood},
title = {Non-normal elements in {Banach} $^*$-algebras},
journal = {Studia Mathematica},
pages = {201--204},
publisher = {mathdoc},
volume = {160},
number = {3},
year = {2004},
doi = {10.4064/sm160-3-1},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm160-3-1/}
}
B. Yood. Non-normal elements in Banach $^*$-algebras. Studia Mathematica, Tome 160 (2004) no. 3, pp. 201-204. doi: 10.4064/sm160-3-1
Cité par Sources :