On the compact approximation property
Studia Mathematica, Tome 160 (2004) no. 2, pp. 185-200

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that a Banach space $X$ has the compact approximation property if and only if for every Banach space $Y$ and every weakly compact operator $T : Y \rightarrow X$, the space $$ \mathfrak{E} = \{ S \circ T : S\ \hbox{compact operator on}\ X \} $$ is an ideal in $\mathfrak{F} = \mathop{\rm span}(\mathfrak{E},\{T\})$ if and only if for every Banach space $Y$ and every weakly compact operator $T: Y \rightarrow X$, there is a net $(S_\gamma)$ of compact operators on $X$ such that $\sup_\gamma \|S_\gamma T\| \le \|T\|$ and $S_\gamma \rightarrow I_X$ in the strong operator topology. Similar results for dual spaces are also proved.
DOI : 10.4064/sm160-2-6
Keywords: banach space has compact approximation property only every banach space every weakly compact operator rightarrow space mathfrak circ hbox compact operator ideal mathfrak mathop span mathfrak only every banach space every weakly compact operator rightarrow there net gamma compact operators sup gamma gamma gamma rightarrow strong operator topology similar results dual spaces proved

Vegard Lima 1 ; Åsvald Lima 1 ; Olav Nygaard 1

1 Department of Mathematics Agder University College Serviceboks 422 4604 Kristiansand, Norway
@article{10_4064_sm160_2_6,
     author = {Vegard Lima and \r{A}svald Lima and Olav Nygaard},
     title = {On the compact approximation property},
     journal = {Studia Mathematica},
     pages = {185--200},
     publisher = {mathdoc},
     volume = {160},
     number = {2},
     year = {2004},
     doi = {10.4064/sm160-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm160-2-6/}
}
TY  - JOUR
AU  - Vegard Lima
AU  - Åsvald Lima
AU  - Olav Nygaard
TI  - On the compact approximation property
JO  - Studia Mathematica
PY  - 2004
SP  - 185
EP  - 200
VL  - 160
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm160-2-6/
DO  - 10.4064/sm160-2-6
LA  - en
ID  - 10_4064_sm160_2_6
ER  - 
%0 Journal Article
%A Vegard Lima
%A Åsvald Lima
%A Olav Nygaard
%T On the compact approximation property
%J Studia Mathematica
%D 2004
%P 185-200
%V 160
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm160-2-6/
%R 10.4064/sm160-2-6
%G en
%F 10_4064_sm160_2_6
Vegard Lima; Åsvald Lima; Olav Nygaard. On the compact approximation property. Studia Mathematica, Tome 160 (2004) no. 2, pp. 185-200. doi: 10.4064/sm160-2-6

Cité par Sources :