We show that a Banach space $X$ has the
compact approximation property if and only if
for every Banach space $Y$ and every weakly compact
operator $T : Y \rightarrow X$, the space
$$
\mathfrak{E} = \{ S \circ T :
S\ \hbox{compact operator on}\ X \}
$$
is an ideal in $\mathfrak{F} = \mathop{\rm span}(\mathfrak{E},\{T\})$
if and only if
for every Banach space $Y$ and every weakly compact
operator $T: Y \rightarrow X$, there is a net
$(S_\gamma)$ of compact operators on $X$ such that
$\sup_\gamma \|S_\gamma T\| \le \|T\|$ and
$S_\gamma \rightarrow I_X$ in the strong operator
topology.
Similar results for dual spaces are also proved.
Keywords:
banach space has compact approximation property only every banach space every weakly compact operator rightarrow space mathfrak circ hbox compact operator ideal mathfrak mathop span mathfrak only every banach space every weakly compact operator rightarrow there net gamma compact operators sup gamma gamma gamma rightarrow strong operator topology similar results dual spaces proved
@article{10_4064_sm160_2_6,
author = {Vegard Lima and \r{A}svald Lima and Olav Nygaard},
title = {On the compact approximation property},
journal = {Studia Mathematica},
pages = {185--200},
year = {2004},
volume = {160},
number = {2},
doi = {10.4064/sm160-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm160-2-6/}
}
TY - JOUR
AU - Vegard Lima
AU - Åsvald Lima
AU - Olav Nygaard
TI - On the compact approximation property
JO - Studia Mathematica
PY - 2004
SP - 185
EP - 200
VL - 160
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm160-2-6/
DO - 10.4064/sm160-2-6
LA - en
ID - 10_4064_sm160_2_6
ER -
%0 Journal Article
%A Vegard Lima
%A Åsvald Lima
%A Olav Nygaard
%T On the compact approximation property
%J Studia Mathematica
%D 2004
%P 185-200
%V 160
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm160-2-6/
%R 10.4064/sm160-2-6
%G en
%F 10_4064_sm160_2_6
Vegard Lima; Åsvald Lima; Olav Nygaard. On the compact approximation property. Studia Mathematica, Tome 160 (2004) no. 2, pp. 185-200. doi: 10.4064/sm160-2-6