On the compact approximation property
Studia Mathematica, Tome 160 (2004) no. 2, pp. 185-200
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that a Banach space $X$ has the
compact approximation property if and only if
for every Banach space $Y$ and every weakly compact
operator $T : Y \rightarrow X$, the space
$$
\mathfrak{E} = \{ S \circ T :
S\ \hbox{compact operator on}\ X \}
$$
is an ideal in $\mathfrak{F} = \mathop{\rm span}(\mathfrak{E},\{T\})$
if and only if
for every Banach space $Y$ and every weakly compact
operator $T: Y \rightarrow X$, there is a net
$(S_\gamma)$ of compact operators on $X$ such that
$\sup_\gamma \|S_\gamma T\| \le \|T\|$ and
$S_\gamma \rightarrow I_X$ in the strong operator
topology.
Similar results for dual spaces are also proved.
Keywords:
banach space has compact approximation property only every banach space every weakly compact operator rightarrow space mathfrak circ hbox compact operator ideal mathfrak mathop span mathfrak only every banach space every weakly compact operator rightarrow there net gamma compact operators sup gamma gamma gamma rightarrow strong operator topology similar results dual spaces proved
Affiliations des auteurs :
Vegard Lima 1 ; Åsvald Lima 1 ; Olav Nygaard 1
@article{10_4064_sm160_2_6,
author = {Vegard Lima and \r{A}svald Lima and Olav Nygaard},
title = {On the compact approximation property},
journal = {Studia Mathematica},
pages = {185--200},
publisher = {mathdoc},
volume = {160},
number = {2},
year = {2004},
doi = {10.4064/sm160-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm160-2-6/}
}
TY - JOUR AU - Vegard Lima AU - Åsvald Lima AU - Olav Nygaard TI - On the compact approximation property JO - Studia Mathematica PY - 2004 SP - 185 EP - 200 VL - 160 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm160-2-6/ DO - 10.4064/sm160-2-6 LA - en ID - 10_4064_sm160_2_6 ER -
Vegard Lima; Åsvald Lima; Olav Nygaard. On the compact approximation property. Studia Mathematica, Tome 160 (2004) no. 2, pp. 185-200. doi: 10.4064/sm160-2-6
Cité par Sources :