Beurling algebras and uniform norms
Studia Mathematica, Tome 160 (2004) no. 2, pp. 179-183
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Given a locally compact abelian group $G$ with a measurable weight $\omega $, it is shown that the Beurling algebra $L^{1}(G, \omega ) $ admits either exactly one uniform norm or infinitely many uniform norms, and that $L^{1}(G, \omega ) $ admits exactly one uniform norm iff it admits a minimum uniform norm.
Mots-clés :
given locally compact abelian group measurable weight omega shown beurling algebra omega admits either exactly uniform norm infinitely many uniform norms omega admits exactly uniform norm admits minimum uniform norm
Affiliations des auteurs :
S. J. Bhatt 1 ; H. V. Dedania 1
@article{10_4064_sm160_2_5,
author = {S. J. Bhatt and H. V. Dedania},
title = {Beurling algebras and uniform norms},
journal = {Studia Mathematica},
pages = {179--183},
year = {2004},
volume = {160},
number = {2},
doi = {10.4064/sm160-2-5},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm160-2-5/}
}
S. J. Bhatt; H. V. Dedania. Beurling algebras and uniform norms. Studia Mathematica, Tome 160 (2004) no. 2, pp. 179-183. doi: 10.4064/sm160-2-5
Cité par Sources :