Given a locally compact abelian group $G$ with a measurable weight $\omega $, it is shown that the Beurling algebra $L^{1}(G, \omega ) $ admits either exactly one uniform norm or infinitely many uniform norms, and that $L^{1}(G, \omega ) $ admits exactly one uniform norm iff it admits a minimum uniform norm.
@article{10_4064_sm160_2_5,
author = {S. J. Bhatt and H. V. Dedania},
title = {Beurling algebras and uniform norms},
journal = {Studia Mathematica},
pages = {179--183},
year = {2004},
volume = {160},
number = {2},
doi = {10.4064/sm160-2-5},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm160-2-5/}
}
TY - JOUR
AU - S. J. Bhatt
AU - H. V. Dedania
TI - Beurling algebras and uniform norms
JO - Studia Mathematica
PY - 2004
SP - 179
EP - 183
VL - 160
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm160-2-5/
DO - 10.4064/sm160-2-5
LA - de
ID - 10_4064_sm160_2_5
ER -
%0 Journal Article
%A S. J. Bhatt
%A H. V. Dedania
%T Beurling algebras and uniform norms
%J Studia Mathematica
%D 2004
%P 179-183
%V 160
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm160-2-5/
%R 10.4064/sm160-2-5
%G de
%F 10_4064_sm160_2_5
S. J. Bhatt; H. V. Dedania. Beurling algebras and uniform norms. Studia Mathematica, Tome 160 (2004) no. 2, pp. 179-183. doi: 10.4064/sm160-2-5