Duality of matrix-weighted Besov spaces
Studia Mathematica, Tome 160 (2004) no. 2, pp. 129-156
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We determine the duals of the homogeneous matrix-weighted Besov spaces $\displaystyle \dot{B}^{\alpha q}_p(W)$
and $\displaystyle \dot{b}^{\alpha q}_p(W)$ which were previously defined in [5].
If $W$ is a matrix $A_p$ weight, then the dual of
$\dot{B}^{\alpha q}_p(W)$ can be identified with
$\displaystyle \dot{B}^{-\alpha q'}_{p'}(W^{-p'/p})$ and, similarly,
$\displaystyle [\dot{b}^{\alpha q}_p(W)]^* \approx \dot{b}^{-\alpha q'}_{p'}(W^{-p'/p})$.
Moreover, for certain $W$ which may not be in the $A_p$ class,
the duals of $\dot{B}^{\alpha q}_p(W)$ and $\dot{b}^{\alpha q}_p(W)$
are determined and expressed in terms of
the Besov spaces $\displaystyle \dot{B}^{-\alpha q'}_{p'}(\{A^{-1}_Q\})$
and $\displaystyle \dot{b}^{-\alpha q'}_{p'}(\{A_Q^{-1}\})$,
which we define in terms of reducing operators $\{A_Q\}_Q$ associated with $W$.
We also develop the basic theory of these reducing operator Besov spaces.
Similar results are shown for inhomogeneous spaces.
Keywords:
determine duals homogeneous matrix weighted besov spaces displaystyle dot alpha displaystyle dot alpha which previously defined matrix weight dual dot alpha identified displaystyle dot alpha p similarly displaystyle dot alpha * approx dot alpha p moreover certain which may class duals dot alpha dot alpha determined expressed terms besov spaces displaystyle dot alpha displaystyle dot alpha which define terms reducing operators associated develop basic theory these reducing operator besov spaces similar results shown inhomogeneous spaces
Affiliations des auteurs :
Svetlana Roudenko 1
@article{10_4064_sm160_2_3,
author = {Svetlana Roudenko},
title = {Duality of matrix-weighted {Besov} spaces},
journal = {Studia Mathematica},
pages = {129--156},
publisher = {mathdoc},
volume = {160},
number = {2},
year = {2004},
doi = {10.4064/sm160-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm160-2-3/}
}
Svetlana Roudenko. Duality of matrix-weighted Besov spaces. Studia Mathematica, Tome 160 (2004) no. 2, pp. 129-156. doi: 10.4064/sm160-2-3
Cité par Sources :