On weak sequential convergence in JB$^*$-triple duals
Studia Mathematica, Tome 160 (2004) no. 2, pp. 117-127

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study various Banach space properties of the dual space $E^*$ of a homogeneous Banach space (alias, a JB$^*$-triple) $E$. For example, if all primitive $M$-ideals of $E$ are maximal, we show that $E^*$ has the Alternative Dunford–Pettis property (respectively, the Kadec–Klee property) if and only if all biholomorphic automorphisms of the open unit ball of $E$ are sequentially weakly continuous (respectively, weakly continuous). Those $E$ for which $E^*$ has the weak$^*$ Kadec–Klee property are characterised by a compactness condition on $E$. Whenever it exists, the predual of $E$ is shown to have the Kadec–Klee property if and only if $E$ is atomic with no infinite spin part.
DOI : 10.4064/sm160-2-2
Keywords: study various banach space properties dual space * homogeneous banach space alias * triple example primitive m ideals maximal * has alternative dunford pettis property respectively kadec klee property only biholomorphic automorphisms unit ball sequentially weakly continuous respectively weakly continuous those which * has weak * kadec klee property characterised compactness condition whenever exists predual shown have kadec klee property only atomic infinite spin part

Leslie J. Bunce 1 ; Antonio M. Peralta 2

1 University of Reading Reading RG6 2AX, Great Britain
2 Departamento de Análisis Matemático Facultad de Ciencias Universidad de Granada 18071 Granada, Spain
@article{10_4064_sm160_2_2,
     author = {Leslie J. Bunce and Antonio M. Peralta},
     title = {On weak sequential convergence in {JB}$^*$-triple duals},
     journal = {Studia Mathematica},
     pages = {117--127},
     publisher = {mathdoc},
     volume = {160},
     number = {2},
     year = {2004},
     doi = {10.4064/sm160-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm160-2-2/}
}
TY  - JOUR
AU  - Leslie J. Bunce
AU  - Antonio M. Peralta
TI  - On weak sequential convergence in JB$^*$-triple duals
JO  - Studia Mathematica
PY  - 2004
SP  - 117
EP  - 127
VL  - 160
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm160-2-2/
DO  - 10.4064/sm160-2-2
LA  - en
ID  - 10_4064_sm160_2_2
ER  - 
%0 Journal Article
%A Leslie J. Bunce
%A Antonio M. Peralta
%T On weak sequential convergence in JB$^*$-triple duals
%J Studia Mathematica
%D 2004
%P 117-127
%V 160
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm160-2-2/
%R 10.4064/sm160-2-2
%G en
%F 10_4064_sm160_2_2
Leslie J. Bunce; Antonio M. Peralta. On weak sequential convergence in JB$^*$-triple duals. Studia Mathematica, Tome 160 (2004) no. 2, pp. 117-127. doi: 10.4064/sm160-2-2

Cité par Sources :