Every separable $L_1$-predual is complemented in a $C^*$-algebra
Studia Mathematica, Tome 160 (2004) no. 2, pp. 103-116

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that every separable complex $L_1$-predual space $X$ is contractively complemented in the CAR-algebra. As an application we deduce that the open unit ball of $X$ is a bounded homogeneous symmetric domain.
DOI : 10.4064/sm160-2-1
Keywords: every separable complex predual space contractively complemented car algebra application deduce unit ball bounded homogeneous symmetric domain

Wolfgang Lusky 1

1 Fakultät für Elektrotechnik, Informatik und Mathematik Universität Paderborn Warburger Straße 100 D-33098 Paderborn, Germany
@article{10_4064_sm160_2_1,
     author = {Wolfgang Lusky},
     title = {Every separable $L_1$-predual is complemented
 in a $C^*$-algebra},
     journal = {Studia Mathematica},
     pages = {103--116},
     publisher = {mathdoc},
     volume = {160},
     number = {2},
     year = {2004},
     doi = {10.4064/sm160-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm160-2-1/}
}
TY  - JOUR
AU  - Wolfgang Lusky
TI  - Every separable $L_1$-predual is complemented
 in a $C^*$-algebra
JO  - Studia Mathematica
PY  - 2004
SP  - 103
EP  - 116
VL  - 160
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm160-2-1/
DO  - 10.4064/sm160-2-1
LA  - en
ID  - 10_4064_sm160_2_1
ER  - 
%0 Journal Article
%A Wolfgang Lusky
%T Every separable $L_1$-predual is complemented
 in a $C^*$-algebra
%J Studia Mathematica
%D 2004
%P 103-116
%V 160
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm160-2-1/
%R 10.4064/sm160-2-1
%G en
%F 10_4064_sm160_2_1
Wolfgang Lusky. Every separable $L_1$-predual is complemented
 in a $C^*$-algebra. Studia Mathematica, Tome 160 (2004) no. 2, pp. 103-116. doi: 10.4064/sm160-2-1

Cité par Sources :