Every separable $L_1$-predual is complemented
in a $C^*$-algebra
Studia Mathematica, Tome 160 (2004) no. 2, pp. 103-116
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that every separable complex $L_1$-predual space $X$ is contractively complemented in the CAR-algebra. As an application we deduce that the open unit ball of $X$ is a bounded homogeneous symmetric domain.
Keywords:
every separable complex predual space contractively complemented car algebra application deduce unit ball bounded homogeneous symmetric domain
Affiliations des auteurs :
Wolfgang Lusky 1
@article{10_4064_sm160_2_1,
author = {Wolfgang Lusky},
title = {Every separable $L_1$-predual is complemented
in a $C^*$-algebra},
journal = {Studia Mathematica},
pages = {103--116},
publisher = {mathdoc},
volume = {160},
number = {2},
year = {2004},
doi = {10.4064/sm160-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm160-2-1/}
}
Wolfgang Lusky. Every separable $L_1$-predual is complemented in a $C^*$-algebra. Studia Mathematica, Tome 160 (2004) no. 2, pp. 103-116. doi: 10.4064/sm160-2-1
Cité par Sources :