The $L^{r}$ Henstock–Kurzweil integral
Studia Mathematica, Tome 160 (2004) no. 1, pp. 53-81

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We present a method of integration along the lines of the Henstock–Kurzweil integral. All $L^{r}$-derivatives are integrable in this method.
DOI : 10.4064/sm160-1-3
Mots-clés : present method integration along lines henstock kurzweil integral derivatives integrable method

Paul M. Musial 1 ; Yoram Sagher 2

1 Department of Mathematics and Computer Science Chicago State University 9501 S. King Drive, Chicago, IL 60628, U.S.A.
2 Department of Mathematics University of Illinois 851 S. Morgan Chicago, IL 60607, U.S.A.
@article{10_4064_sm160_1_3,
     author = {Paul M. Musial and Yoram Sagher},
     title = {The $L^{r}$ {Henstock{\textendash}Kurzweil} integral},
     journal = {Studia Mathematica},
     pages = {53--81},
     publisher = {mathdoc},
     volume = {160},
     number = {1},
     year = {2004},
     doi = {10.4064/sm160-1-3},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm160-1-3/}
}
TY  - JOUR
AU  - Paul M. Musial
AU  - Yoram Sagher
TI  - The $L^{r}$ Henstock–Kurzweil integral
JO  - Studia Mathematica
PY  - 2004
SP  - 53
EP  - 81
VL  - 160
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm160-1-3/
DO  - 10.4064/sm160-1-3
LA  - de
ID  - 10_4064_sm160_1_3
ER  - 
%0 Journal Article
%A Paul M. Musial
%A Yoram Sagher
%T The $L^{r}$ Henstock–Kurzweil integral
%J Studia Mathematica
%D 2004
%P 53-81
%V 160
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm160-1-3/
%R 10.4064/sm160-1-3
%G de
%F 10_4064_sm160_1_3
Paul M. Musial; Yoram Sagher. The $L^{r}$ Henstock–Kurzweil integral. Studia Mathematica, Tome 160 (2004) no. 1, pp. 53-81. doi: 10.4064/sm160-1-3

Cité par Sources :