Fourier multipliers for Hölder continuous functions
and maximal regularity
Studia Mathematica, Tome 160 (2004) no. 1, pp. 23-51
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Two operator-valued Fourier multiplier theorems for Hölder spaces are proved, one periodic, the other on the line. In contrast to the $L^p$-situation they hold for arbitrary Banach spaces. As a consequence, maximal regularity in the sense of Hölder can be characterized by simple resolvent estimates of the underlying operator.
Keywords:
operator valued fourier multiplier theorems lder spaces proved periodic other line contrast p situation arbitrary banach spaces consequence maximal regularity sense lder characterized simple resolvent estimates underlying operator
Affiliations des auteurs :
Wolfgang Arendt 1 ; Charles Batty 2 ; Shangquan Bu 3
@article{10_4064_sm160_1_2,
author = {Wolfgang Arendt and Charles Batty and Shangquan Bu},
title = {Fourier multipliers for {H\"older} continuous functions
and maximal regularity},
journal = {Studia Mathematica},
pages = {23--51},
publisher = {mathdoc},
volume = {160},
number = {1},
year = {2004},
doi = {10.4064/sm160-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm160-1-2/}
}
TY - JOUR AU - Wolfgang Arendt AU - Charles Batty AU - Shangquan Bu TI - Fourier multipliers for Hölder continuous functions and maximal regularity JO - Studia Mathematica PY - 2004 SP - 23 EP - 51 VL - 160 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm160-1-2/ DO - 10.4064/sm160-1-2 LA - en ID - 10_4064_sm160_1_2 ER -
%0 Journal Article %A Wolfgang Arendt %A Charles Batty %A Shangquan Bu %T Fourier multipliers for Hölder continuous functions and maximal regularity %J Studia Mathematica %D 2004 %P 23-51 %V 160 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm160-1-2/ %R 10.4064/sm160-1-2 %G en %F 10_4064_sm160_1_2
Wolfgang Arendt; Charles Batty; Shangquan Bu. Fourier multipliers for Hölder continuous functions and maximal regularity. Studia Mathematica, Tome 160 (2004) no. 1, pp. 23-51. doi: 10.4064/sm160-1-2
Cité par Sources :