Gelfand numbers and metric entropy of
convex hulls in Hilbert spaces
Studia Mathematica, Tome 159 (2003) no. 3, pp. 391-402
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For a precompact subset $K$ of a Hilbert space we prove the following
inequalities:
$$
n^{1/2} c_n(\mathop{\rm cov}\nolimits(K))\le c_K\Big(1+\sum^n_{k=1} k^{-1/2}e_k(K)\Big),\quad\
n\in \mathbb N,
$$
and
$$
k^{1/2} c_{k+n}(\mathop{\rm cov}\nolimits(K))\le c\bigg[\log^{1/2}(n+1)\varepsilon_n(K)+\sum_{j=n+1}^\infty
\frac{\varepsilon_j(K)}{j\log^{1/2}(j+1)}\bigg],
$$
$k,n\in\mathbb N$, where $c_n(\mathop{\rm cov}\nolimits(K))$ is the $n$th Gelfand number of the absolutely
convex hull of $K$ and $\varepsilon_k(K)$ and $e_k(K)$ denote the $k$th
entropy and $k$th dyadic entropy number of $K$, respectively. The inequalities are,
essentially, a reformulation of the corresponding inequalities given in [CKP] which yield
asymptotically optimal estimates of the Gelfand numbers $c_n(\mathop{\rm cov}\nolimits(K))$ provided that the
entropy numbers $\varepsilon_n(K)$ are slowly decreasing. For example, we get optimal
estimates in the non-critical case where $\varepsilon_n(K)\preceq
\log^{-\alpha}(n+1)$,
$\alpha\not=1/2$, $0\alpha\infty$, as well as in the
critical case where $\alpha=1/2$. For $\alpha=1/2$ we show the asymptotically
optimal estimate $c_n(\mathop{\rm cov}\nolimits(K))\preceq n^{-1/2}\log(n+1)$, which refines the
corresponding result of Gao [Ga] obtained for entropy numbers. Furthermore, we establish
inequalities similar to that of Creutzig and Steinwart [CrSt] in the critical as well as
non-critical cases. Finally, we give an alternative proof of a result by Li and Linde [LL] for
Gelfand and entropy numbers of the absolutely convex hull of $K$ when $K$ has
the shape $K=\{t_1,t_2,\ldots\}$, where $\|t_n\|\le \sigma_n$,
$ \sigma_n\downarrow 0$. In
particular, for $\sigma_n\le \log^{-1/2}(n+1)$, which corresponds to the critical case,
we get a better asymptotic behaviour of Gelfand numbers, $c_n(\mathop{\rm cov}\nolimits(K))\preceq
n^{-1/2}$.
Keywords:
precompact subset hilbert space prove following inequalities mathop cov nolimits sum quad mathbb mathop cov nolimits bigg log varepsilon sum infty frac varepsilon log bigg mathbb where mathop cov nolimits nth gelfand number absolutely convex hull varepsilon denote kth entropy kth dyadic entropy number respectively inequalities essentially reformulation corresponding inequalities given ckp which yield asymptotically optimal estimates gelfand numbers mathop cov nolimits provided entropy numbers varepsilon slowly decreasing example get optimal estimates non critical where varepsilon preceq log alpha alpha alpha infty critical where alpha alpha asymptotically optimal estimate mathop cov nolimits preceq log which refines corresponding result gao obtained entropy numbers furthermore establish inequalities similar creutzig steinwart crst critical non critical cases finally alternative proof result linde gelfand entropy numbers absolutely convex hull has shape ldots where sigma sigma downarrow particular sigma log which corresponds critical get better asymptotic behaviour gelfand numbers mathop cov nolimits preceq
Affiliations des auteurs :
Bernd Carl 1 ; David E. Edmunds 2
@article{10_4064_sm159_3_4,
author = {Bernd Carl and David E. Edmunds},
title = {Gelfand numbers and metric entropy of
convex hulls in {Hilbert} spaces},
journal = {Studia Mathematica},
pages = {391--402},
publisher = {mathdoc},
volume = {159},
number = {3},
year = {2003},
doi = {10.4064/sm159-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm159-3-4/}
}
TY - JOUR AU - Bernd Carl AU - David E. Edmunds TI - Gelfand numbers and metric entropy of convex hulls in Hilbert spaces JO - Studia Mathematica PY - 2003 SP - 391 EP - 402 VL - 159 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm159-3-4/ DO - 10.4064/sm159-3-4 LA - en ID - 10_4064_sm159_3_4 ER -
Bernd Carl; David E. Edmunds. Gelfand numbers and metric entropy of convex hulls in Hilbert spaces. Studia Mathematica, Tome 159 (2003) no. 3, pp. 391-402. doi: 10.4064/sm159-3-4
Cité par Sources :