A new characterization of the Sobolev space
Studia Mathematica, Tome 159 (2003) no. 2, pp. 263-275
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The purpose of this paper is to provide a new characterization of the Sobolev space $W^{1,1}(
\mathbb R^n)$. We also show a new proof of the characterization of the Sobolev space $W^{1,p}(
\mathbb R^n)$, $1\leq p\infty $, in terms of Poincaré inequalities.
Keywords:
purpose paper provide characterization sobolev space mathbb proof characterization sobolev space mathbb leq infty terms poincar inequalities
Affiliations des auteurs :
Piotr Hajłasz 1
@article{10_4064_sm159_2_7,
author = {Piotr Haj{\l}asz},
title = {A new characterization of the {Sobolev} space},
journal = {Studia Mathematica},
pages = {263--275},
publisher = {mathdoc},
volume = {159},
number = {2},
year = {2003},
doi = {10.4064/sm159-2-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm159-2-7/}
}
Piotr Hajłasz. A new characterization of the Sobolev space. Studia Mathematica, Tome 159 (2003) no. 2, pp. 263-275. doi: 10.4064/sm159-2-7
Cité par Sources :