Fréchet quotients of spaces of real-analytic functions
Studia Mathematica, Tome 159 (2003) no. 2, pp. 229-245
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We characterize all Fréchet quotients of the space ${\scr A} ({\mit \Omega })$ of (complex-valued) real-analytic functions on an arbitrary open set ${\mit \Omega }\subseteq
\mathbb R^d$. We also characterize those Fréchet spaces $E$ such that every short exact sequence of the form $0\to E \to X \to {\scr A} ({\mit \Omega }) \to 0$ splits.
Mots-clés :
characterize chet quotients space scr mit omega complex valued real analytic functions arbitrary set mit omega subseteq mathbb characterize those chet spaces every short exact sequence form scr mit omega splits
Affiliations des auteurs :
P. Domański 1 ; L. Frerick 2 ; D. Vogt 2
@article{10_4064_sm159_2_5,
author = {P. Doma\'nski and L. Frerick and D. Vogt},
title = {Fr\'echet quotients of spaces of real-analytic functions},
journal = {Studia Mathematica},
pages = {229--245},
year = {2003},
volume = {159},
number = {2},
doi = {10.4064/sm159-2-5},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm159-2-5/}
}
TY - JOUR AU - P. Domański AU - L. Frerick AU - D. Vogt TI - Fréchet quotients of spaces of real-analytic functions JO - Studia Mathematica PY - 2003 SP - 229 EP - 245 VL - 159 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm159-2-5/ DO - 10.4064/sm159-2-5 LA - fr ID - 10_4064_sm159_2_5 ER -
P. Domański; L. Frerick; D. Vogt. Fréchet quotients of spaces of real-analytic functions. Studia Mathematica, Tome 159 (2003) no. 2, pp. 229-245. doi: 10.4064/sm159-2-5
Cité par Sources :