1Faculty of Mathematics and Computer Science A. Mickiewicz University Poznań and Institute of Mathematics Polish Academy of Sciences (Poznań branch) Umultowska 87 61-614 Poznań, Poland 2FB Mathematik Bergische Universität Wuppertal Gaußstr. 20 D-42097 Wuppertal, Germany
Studia Mathematica, Tome 159 (2003) no. 2, pp. 229-245
We characterize all Fréchet quotients of the space ${\scr A} ({\mit \Omega })$ of (complex-valued) real-analytic functions on an arbitrary open set ${\mit \Omega }\subseteq
\mathbb R^d$. We also characterize those Fréchet spaces $E$ such that every short exact sequence of the form $0\to E \to X \to {\scr A} ({\mit \Omega }) \to 0$ splits.
Mots-clés :
characterize chet quotients space scr mit omega complex valued real analytic functions arbitrary set mit omega subseteq mathbb characterize those chet spaces every short exact sequence form scr mit omega splits
Affiliations des auteurs :
P. Domański 
1
;
L. Frerick 
2
;
D. Vogt 
2
1
Faculty of Mathematics and Computer Science A. Mickiewicz University Poznań and Institute of Mathematics Polish Academy of Sciences (Poznań branch) Umultowska 87 61-614 Poznań, Poland
2
FB Mathematik Bergische Universität Wuppertal Gaußstr. 20 D-42097 Wuppertal, Germany
@article{10_4064_sm159_2_5,
author = {P. Doma\'nski and L. Frerick and D. Vogt},
title = {Fr\'echet quotients of spaces of real-analytic functions},
journal = {Studia Mathematica},
pages = {229--245},
year = {2003},
volume = {159},
number = {2},
doi = {10.4064/sm159-2-5},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm159-2-5/}
}
TY - JOUR
AU - P. Domański
AU - L. Frerick
AU - D. Vogt
TI - Fréchet quotients of spaces of real-analytic functions
JO - Studia Mathematica
PY - 2003
SP - 229
EP - 245
VL - 159
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm159-2-5/
DO - 10.4064/sm159-2-5
LA - fr
ID - 10_4064_sm159_2_5
ER -
%0 Journal Article
%A P. Domański
%A L. Frerick
%A D. Vogt
%T Fréchet quotients of spaces of real-analytic functions
%J Studia Mathematica
%D 2003
%P 229-245
%V 159
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm159-2-5/
%R 10.4064/sm159-2-5
%G fr
%F 10_4064_sm159_2_5
P. Domański; L. Frerick; D. Vogt. Fréchet quotients of spaces of real-analytic functions. Studia Mathematica, Tome 159 (2003) no. 2, pp. 229-245. doi: 10.4064/sm159-2-5