Extremal sections of complex $l_{p}$-balls, $0 p \leq 2$
Studia Mathematica, Tome 159 (2003) no. 2, pp. 185-194

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the extremal volume of central hyperplane sections of complex $n$-dimensional $l_p$-balls with $0 p\le 2.$ We show that the minimum corresponds to hyperplanes orthogonal to vectors $\xi =(\xi ^1,\mathinner {\ldotp \ldotp \ldotp },\xi ^n)\in {{\mathbb C}}^n$ with $|\xi ^1|=\mathinner {\ldotp \ldotp \ldotp }=|\xi ^n|$, and the maximum corresponds to hyperplanes orthogonal to vectors with only one non-zero coordinate.
DOI : 10.4064/sm159-2-2
Keywords: study extremal volume central hyperplane sections complex n dimensional p balls minimum corresponds hyperplanes orthogonal vectors mathinner ldotp ldotp ldotp mathbb mathinner ldotp ldotp ldotp maximum corresponds hyperplanes orthogonal vectors only non zero coordinate

Alexander Koldobsky 1 ; Marisa Zymonopoulou 2

1 Department of Mathematics University of Missouri-Columbia Columbia, MO 65211, U.S.A.
2 Department of Mathematics University of Missouri-Columbia Columbia MO 65211, U.S.A.
@article{10_4064_sm159_2_2,
     author = {Alexander Koldobsky and Marisa Zymonopoulou},
     title = {Extremal sections of complex $l_{p}$-balls, $0 < p \leq 2$},
     journal = {Studia Mathematica},
     pages = {185--194},
     publisher = {mathdoc},
     volume = {159},
     number = {2},
     year = {2003},
     doi = {10.4064/sm159-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm159-2-2/}
}
TY  - JOUR
AU  - Alexander Koldobsky
AU  - Marisa Zymonopoulou
TI  - Extremal sections of complex $l_{p}$-balls, $0 < p \leq 2$
JO  - Studia Mathematica
PY  - 2003
SP  - 185
EP  - 194
VL  - 159
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm159-2-2/
DO  - 10.4064/sm159-2-2
LA  - en
ID  - 10_4064_sm159_2_2
ER  - 
%0 Journal Article
%A Alexander Koldobsky
%A Marisa Zymonopoulou
%T Extremal sections of complex $l_{p}$-balls, $0 < p \leq 2$
%J Studia Mathematica
%D 2003
%P 185-194
%V 159
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm159-2-2/
%R 10.4064/sm159-2-2
%G en
%F 10_4064_sm159_2_2
Alexander Koldobsky; Marisa Zymonopoulou. Extremal sections of complex $l_{p}$-balls, $0 < p \leq 2$. Studia Mathematica, Tome 159 (2003) no. 2, pp. 185-194. doi: 10.4064/sm159-2-2

Cité par Sources :