Extremal sections of complex $l_{p}$-balls, $0 p \leq 2$
Studia Mathematica, Tome 159 (2003) no. 2, pp. 185-194
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the extremal volume of central hyperplane sections of complex
$n$-dimensional $l_p$-balls with $0 p\le 2.$ We show that the minimum corresponds to hyperplanes orthogonal to vectors $\xi =(\xi ^1,\mathinner {\ldotp \ldotp \ldotp },\xi ^n)\in {{\mathbb C}}^n$ with $|\xi ^1|=\mathinner {\ldotp \ldotp \ldotp }=|\xi ^n|$, and the maximum corresponds to hyperplanes orthogonal to vectors with only one non-zero coordinate.
Keywords:
study extremal volume central hyperplane sections complex n dimensional p balls minimum corresponds hyperplanes orthogonal vectors mathinner ldotp ldotp ldotp mathbb mathinner ldotp ldotp ldotp maximum corresponds hyperplanes orthogonal vectors only non zero coordinate
Affiliations des auteurs :
Alexander Koldobsky 1 ; Marisa Zymonopoulou 2
@article{10_4064_sm159_2_2,
author = {Alexander Koldobsky and Marisa Zymonopoulou},
title = {Extremal sections of complex $l_{p}$-balls, $0 < p \leq 2$},
journal = {Studia Mathematica},
pages = {185--194},
publisher = {mathdoc},
volume = {159},
number = {2},
year = {2003},
doi = {10.4064/sm159-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm159-2-2/}
}
TY - JOUR
AU - Alexander Koldobsky
AU - Marisa Zymonopoulou
TI - Extremal sections of complex $l_{p}$-balls, $0 < p \leq 2$
JO - Studia Mathematica
PY - 2003
SP - 185
EP - 194
VL - 159
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm159-2-2/
DO - 10.4064/sm159-2-2
LA - en
ID - 10_4064_sm159_2_2
ER -
Alexander Koldobsky; Marisa Zymonopoulou. Extremal sections of complex $l_{p}$-balls, $0 < p \leq 2$. Studia Mathematica, Tome 159 (2003) no. 2, pp. 185-194. doi: 10.4064/sm159-2-2
Cité par Sources :