Convergence of greedy approximation I. General systems
Studia Mathematica, Tome 159 (2003) no. 1, pp. 143-160

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider convergence of thresholding type approximations with regard to general complete minimal systems $\{ e_n\} $ in a quasi-Banach space $X$. Thresholding approximations are defined as follows. Let $\{ e_n^*\} \subset X^*$ be the conjugate (dual) system to $\{ e_n\} $; then define for $\varepsilon >0$ and $x\in X$ the thresholding approximations as $T_\varepsilon (x) := \sum _{j\in D_\varepsilon (x)} e_j^*(x)e_j$, where $D_\varepsilon (x):= \{ j:|e_j^*(x)| \ge \varepsilon \} $. We study a generalized version of $T_\varepsilon $ that we call the weak thresholding approximation. We modify the $T_\varepsilon (x)$ in the following way. For $\varepsilon >0$, $t\in (0,1)$ we set $ D_{t,\varepsilon }(x) :=\{ j:t\varepsilon \le |e_j^*(x)|\varepsilon \} $ and consider the weak thresholding approximations $T_{\varepsilon ,D}(x) := T_\varepsilon (x) +\sum _{j\in D} e_j^*(x)e_j$, $D\subseteq D_{t,\varepsilon }(x)$. We say that the weak thresholding approximations converge to $x$ if $T_{\varepsilon ,D(\varepsilon )}(x) \to x$ as $\varepsilon \to 0$ for any choice of $D(\varepsilon )\subseteq D_{t,\varepsilon }(x)$. We prove that the convergence set $WT\{ e_n\} $ does not depend on the parameter $t\in (0,1)$ and that it is a linear set. We present some applications of general results on convergence of thresholding approximations to $A$-convergence of both number series and trigonometric series.
DOI : 10.4064/sm159-1-7
Keywords: consider convergence thresholding type approximations regard general complete minimal systems quasi banach space thresholding approximations defined follows * subset * conjugate dual system define varepsilon thresholding approximations varepsilon sum varepsilon * where varepsilon * varepsilon study generalized version varepsilon call weak thresholding approximation modify varepsilon following varepsilon set varepsilon varepsilon * varepsilon consider weak thresholding approximations varepsilon varepsilon sum * subseteq varepsilon say weak thresholding approximations converge varepsilon varepsilon varepsilon choice varepsilon subseteq varepsilon prove convergence set does depend parameter linear set present applications general results convergence thresholding approximations a convergence number series trigonometric series

S. V. Konyagin 1 ; V. N. Temlyakov 2

1 Department of Mechanics and Mathematics Moscow State University 119992 Moscow, Russia
2 Department of Mathematics University of South Carolina Columbia, SC 29208, U.S.A.
@article{10_4064_sm159_1_7,
     author = {S. V. Konyagin and V. N. Temlyakov},
     title = {Convergence of greedy approximation {I.
}  {General} systems},
     journal = {Studia Mathematica},
     pages = {143--160},
     publisher = {mathdoc},
     volume = {159},
     number = {1},
     year = {2003},
     doi = {10.4064/sm159-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm159-1-7/}
}
TY  - JOUR
AU  - S. V. Konyagin
AU  - V. N. Temlyakov
TI  - Convergence of greedy approximation I.
  General systems
JO  - Studia Mathematica
PY  - 2003
SP  - 143
EP  - 160
VL  - 159
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm159-1-7/
DO  - 10.4064/sm159-1-7
LA  - en
ID  - 10_4064_sm159_1_7
ER  - 
%0 Journal Article
%A S. V. Konyagin
%A V. N. Temlyakov
%T Convergence of greedy approximation I.
  General systems
%J Studia Mathematica
%D 2003
%P 143-160
%V 159
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm159-1-7/
%R 10.4064/sm159-1-7
%G en
%F 10_4064_sm159_1_7
S. V. Konyagin; V. N. Temlyakov. Convergence of greedy approximation I.
  General systems. Studia Mathematica, Tome 159 (2003) no. 1, pp. 143-160. doi: 10.4064/sm159-1-7

Cité par Sources :