Lipschitz-free Banach spaces
Studia Mathematica, Tome 159 (2003) no. 1, pp. 121-141 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We show that when a linear quotient map to a separable Banach space $X$ has a Lipschitz right inverse, then it has a linear right inverse. If a separable space $X$ embeds isometrically into a Banach space $Y$, then $Y$ contains an isometric linear copy of $X$. This is false for every nonseparable weakly compactly generated Banach space $X$. Canonical examples of nonseparable Banach spaces which are Lipschitz isomorphic but not linearly isomorphic are constructed. If a Banach space $X$ has the bounded approximation property and $Y$ is Lipschitz isomorphic to $X$, then $Y$ has the bounded approximation property.
DOI : 10.4064/sm159-1-6
Mots-clés : linear quotient map separable banach space has lipschitz right inverse has linear right inverse separable space embeds isometrically banach space contains isometric linear copy false every nonseparable weakly compactly generated banach space canonical examples nonseparable banach spaces which lipschitz isomorphic linearly isomorphic constructed banach space has bounded approximation property lipschitz isomorphic has bounded approximation property

G. Godefroy  1   ; N. J. Kalton  2

1 Équipe d'Analyse Université Paris VI Boîte 186 4, Place Jussieu 75252 Paris Cedex 05, France
2 Department of Mathematics University of Missouri-Columbia Columbia, MO 65211, U.S.A.
@article{10_4064_sm159_1_6,
     author = {G. Godefroy and N. J. Kalton},
     title = {Lipschitz-free {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {121--141},
     year = {2003},
     volume = {159},
     number = {1},
     doi = {10.4064/sm159-1-6},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm159-1-6/}
}
TY  - JOUR
AU  - G. Godefroy
AU  - N. J. Kalton
TI  - Lipschitz-free Banach spaces
JO  - Studia Mathematica
PY  - 2003
SP  - 121
EP  - 141
VL  - 159
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm159-1-6/
DO  - 10.4064/sm159-1-6
LA  - de
ID  - 10_4064_sm159_1_6
ER  - 
%0 Journal Article
%A G. Godefroy
%A N. J. Kalton
%T Lipschitz-free Banach spaces
%J Studia Mathematica
%D 2003
%P 121-141
%V 159
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm159-1-6/
%R 10.4064/sm159-1-6
%G de
%F 10_4064_sm159_1_6
G. Godefroy; N. J. Kalton. Lipschitz-free Banach spaces. Studia Mathematica, Tome 159 (2003) no. 1, pp. 121-141. doi: 10.4064/sm159-1-6

Cité par Sources :